Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 194064, 7 pages
http://dx.doi.org/10.1155/2013/194064
Research Article

Low-Dose Amphotericin B and Murine Dialyzable Spleen Extracts Protect against Systemic Candida Infection in Mice

1Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), 11340 Mexico City, DF, Mexico
2Bioprocesses Development and Research Unit (UDIBI), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), 11340 Mexico City, DF, Mexico
3Department of Immunology, Faculty of Medicine, Autonomous University of Nuevo León (UANL), 64460 San Nicolás de los Garza, NL, Mexico
4Laboratory of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, 14080 Mexico City, DF, Mexico
5Department of Pathology, National Institute of Medical Sciences and Nutrition “Salvador Zubirán”, 14000 Mexico City, DF, Mexico
6Department of Microbiology, Faculty of Medicine, Autonomous University of Nuevo León (UANL), 64460 San Nicolás de los Garza, NL, Mexico
7Department of Microbiology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), 11340 Mexico City, DF, Mexico

Received 3 July 2013; Accepted 10 August 2013

Academic Editor: Oscar Bottasso

Copyright © 2013 F. Robledo-Ávila et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Shoham and S. M. Levitz, “The immune response to fungal infections,” British Journal of Haematology, vol. 129, no. 5, pp. 569–582, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. G. Netea, G. D. Brown, B. J. Kullberg, and N. A. R. Gow, “An integrated model of the recognition of Candida albicans by the innate immune system,” Nature Reviews Microbiology, vol. 6, no. 1, pp. 67–78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Gudlaugsson, S. Gillespie, K. Lee et al., “Attributable mortality of nosocomial candidemia, revisited,” Clinical Infectious Diseases, vol. 37, no. 9, pp. 1172–1177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. P. G. Pappas, J. H. Rex, J. Lee et al., “A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients,” Clinical Infectious Diseases, vol. 37, no. 5, pp. 634–643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. E. K. Szabo and D. M. MacCallum, “The contribution of mouse models to our understanding of systemic candidiasis,” FEMS Microbiology Letters, vol. 320, no. 1, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Glocker, A. Hennigs, M. Nabavi et al., “A homozygous CARD9 mutation in a family with susceptibility to fungal infections,” The New England Journal of Medicine, vol. 361, no. 18, pp. 1727–1735, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. L. Gil and D. Gozalbo, “Role of toll-like receptors in systemic Candida albicans infections,” Frontiers in Bioscience, vol. 14, no. 2, pp. 570–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. G. Netea, C. A. A. van der Graaf, A. G. Vonk, I. Verschueren, J. W. M. van der Meet, and B. J. Kullberg, “The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis,” Journal of Infectious Diseases, vol. 185, no. 10, pp. 1483–1489, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Bellocchio, C. Montagnoli, S. Bozza et al., “The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo,” Journal of Immunology, vol. 172, no. 5, pp. 3059–3069, 2004. View at Google Scholar · View at Scopus
  10. M. K. Kathiravan, A. B. Salake, A. S. Chothe et al., “The biology and chemistry of antifungal agents: a review,” Bioorganic & Medicinal Chemistry, vol. 20, no. 19, pp. 5678–5698, 2012. View at Google Scholar
  11. D. W. Denning, “Echinocandins: a new class of antifungal,” Journal of Antimicrobial Chemotherapy, vol. 49, no. 6, pp. 889–891, 2002. View at Google Scholar · View at Scopus
  12. H. S. Lawrence, “The transfer in humans of delayed skin sensitivity to streptococcal M substance and to tuberculin with disrupted leucocytes,” The Journal of Clinical Investigation, vol. 34, no. 2, pp. 219–230, 1955. View at Google Scholar
  13. R. Berron-Perez, R. Chavez-Sanchez, I. Estrada-Garcia et al., “Indications, usage, and dosage of the transfer factor,” Revista Alergia México, vol. 54, no. 4, pp. 134–139, 2007. View at Google Scholar
  14. M. L. Schulkind and E. M. Ayoub, “Transfer factor as an approach to the treatment of immune deficiency disease,” Birth Defects, vol. 11, no. 1, pp. 436–440, 1975. View at Google Scholar · View at Scopus
  15. H. Valdimarsson, C. B. Wood, J. R. Hobbs, and P. J. Holt, “Immunological features in a case of chronic granulomatous candidiasis and its treatment with transfer factor,” Clinical and Experimental Immunology, vol. 11, no. 2, pp. 151–163, 1972. View at Google Scholar · View at Scopus
  16. V. G. Wong and C. H. Kirkpatrick, “Immunologic reconstitution in a patient with keratoconjunctivitis, superficial candidiasis and hypoparathyroidism: the role of immunocompetent lymphocyte transfusion and transfer factor,” Transactions of the American Ophthalmological Society, vol. 71, pp. 254–271, 1973. View at Google Scholar · View at Scopus
  17. C. C. Benz, J. W. Thomas, M. Mandl, and N. Morgan, “Acquired chronic candidiasis treated with transfer factor,” British Journal of Dermatology, vol. 97, no. 1, pp. 87–91, 1977. View at Google Scholar · View at Scopus
  18. R. A. Fabre, T. M. Pérez, L. D. Aguilar et al., “Transfer factors as immunotherapy and supplement of chemotherapy in experimental pulmonary tuberculosis,” Clinical and Experimental Immunology, vol. 136, no. 2, pp. 215–223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Ulozas, “7. 14—amphotericin B-induced nephrotoxicity,” in Comprehensive Toxicology, A. M. Charlene, Ed., pp. 347–357, Elsevier, Oxford, UK, 2nd edition, 2010. View at Google Scholar
  20. E. Cenci, A. Mencacci, G. Del Sero, F. Bistoni, and L. Romani, “Induction of protective Th1 responses to Candida albicans by antifungal therapy alone or in combination with an Interleukin-4 antagonist,” Journal of Infectious Diseases, vol. 176, no. 1, pp. 217–226, 1997. View at Google Scholar · View at Scopus
  21. E. Cenci, A. Mencacci, G. Del Sero et al., “IFN-γ is required for IL-12 responsiveness in mice with Candida albicans infection,” Journal of Immunology, vol. 161, no. 7, pp. 3543–3550, 1998. View at Google Scholar · View at Scopus
  22. E. Cenci, L. Romani, A. Mencacci et al., “Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing of Candida albicans,” European Journal of Immunology, vol. 23, no. 5, pp. 1034–1038, 1993. View at Google Scholar · View at Scopus
  23. F. Verrecchia and A. Mauviel, “TGF-β and TNF-α: antagonistic cytokines controlling type I collagen gene expression,” Cellular Signalling, vol. 16, no. 8, pp. 873–880, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Nemeth, E. V. Valore, M. Territo, G. Schiller, A. Lichtenstein, and T. Ganz, “Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein,” Blood, vol. 101, no. 7, pp. 2461–2463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. I. De Domenico, T. Y. Zhang, C. L. Koening et al., “Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice,” The Journal of Clinical Investigation, vol. 120, no. 7, pp. 2395–2405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Tavanti, G. Maisetta, G. Del Gaudio et al., “Fungicidal activity of the human peptide hepcidin 20 alone or in combination with other antifungals against Candida glabrata isolates,” Peptides, vol. 32, no. 12, pp. 2484–2487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. F. B. Sow, W. C. Florence, A. R. Satoskar, L. S. Schlesinger, B. S. Zwilling, and W. P. Lafuse, “Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis,” Journal of Leukocyte Biology, vol. 82, no. 4, pp. 934–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Spellberg, A. S. Ibrahim, J. E. Edwards Jr., and S. G. Filler, “Mice with disseminated candidiasis die of progressive sepsis,” Journal of Infectious Diseases, vol. 192, no. 2, pp. 336–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. S. Lionakis, B. G. Fischer, J. K. Lim et al., “Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis,” PLoS Pathology, vol. 8, no. 8, Article ID e1002865, 2012. View at Google Scholar
  30. F. Legrand, M. Lecuit, B. Dupont et al., “Adjuvant corticosteroid therapy for chronic disseminated candidiasis,” Clinical Infectious Diseases, vol. 46, no. 5, pp. 696–702, 2008. View at Publisher · View at Google Scholar · View at Scopus