Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 197807, 10 pages
http://dx.doi.org/10.1155/2013/197807
Review Article

Polyomavirus JC in the Context of Immunosuppression: A Series of Adaptive, DNA Replication-Driven Recombination Events in the Development of Progressive Multifocal Leukoencephalopathy

Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507, USA

Received 3 February 2013; Accepted 17 March 2013

Academic Editor: Serena Delbue

Copyright © 2013 Edward M. Johnson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. W. Grinnell, B. L. Padgett, and D. L. Walker, “Distribution of nonintegrated DNA from JC papovavirus in organs of patients with progressive multifocal leukoencephalopathy,” Journal of Infectious Diseases, vol. 147, no. 4, pp. 669–675, 1983. View at Google Scholar · View at Scopus
  2. J. M. Kean, S. Rao, M. Wang, and R. L. Garcea, “Seroepidemiology of human polyomaviruses,” PLoS Pathogens, vol. 5, no. 3, Article ID e1000363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. W. A. Knowles, “Discovery and epidemiology of the human polyomaviruses BK virus (BKV) and JC virus (JCV),” Advances in Experimental Medicine and Biology, vol. 577, pp. 19–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. C. E. Reid, H. Li, G. Sur et al., “Sequencing and analysis of JC virus DNA from natalizumab-treated PML patients,” Journal of Infectious Diseases, vol. 204, no. 2, pp. 237–244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. R. Berger, B. Kaszovitz, M. J. D. Post, and G. Dickinson, “Progressive multifocal leukoencephalopathy associated with human immunodeficiency virus infection: a review of the literature with a report of sixteen cases,” Annals of Internal Medicine, vol. 107, no. 1, pp. 78–87, 1987. View at Google Scholar · View at Scopus
  6. P. Cinque, I. J. Koralnik, S. Gerevini, J. M. Miro, and R. W. Price, “Progressive multifocal leukoencephalopathy in HIV-1 infection,” The Lancet Infectious Diseases, vol. 9, no. 10, pp. 625–636, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. B. Clifford, “Opportunistic viral infections in the setting of human immunodeficiency virus,” Seminars in Neurology, vol. 19, no. 2, pp. 185–192, 1999. View at Google Scholar · View at Scopus
  8. M. W. Ferenczy, L. J. Marshall, C. D. Nelson et al., “Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain,” Clinical Microbiology Reviews, vol. 25, no. 3, pp. 471–506, 2012. View at Google Scholar
  9. E. M. Johnson, “Structural evaluation of new human polyomaviruses provides clues to pathobiology,” Trends in Microbiology, vol. 18, no. 5, pp. 215–223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. E. O. Major, K. Amemiya, C. S. Tornatore, S. A. Houff, and J. R. Berger, “Pathogenesis and molecular biology of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain,” Clinical Microbiology Reviews, vol. 5, no. 1, pp. 49–73, 1992. View at Google Scholar · View at Scopus
  11. B. L. Padgett, C. M. Rogers, and D. L. Walker, “JC virus, a human polyomavirus associated with progressive multifocal leukoencephalopathy: additional biological characteristics and antigenic relationships,” Infection and Immunity, vol. 15, no. 2, pp. 656–662, 1977. View at Google Scholar · View at Scopus
  12. J. R. Berger and S. Houff, “Progressive multifocal leukoencephalopathy: lessons from AIDS and natalizumab,” Neurological Research, vol. 28, no. 3, pp. 299–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. B. Clifford, A. DeLuca, D. M. Simpson, G. Arendt, G. Giovannoni, and A. Nath, “Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases,” The Lancet Neurology, vol. 9, no. 4, pp. 438–446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Gorelik, M. Lerner, S. Bixler et al., “Anti-JC virus antibodies: implications for PML risk stratification,” Annals of Neurology, vol. 68, no. 3, pp. 295–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. S. Tan and I. J. Koralnik, “Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis,” The Lancet Neurology, vol. 9, no. 4, pp. 425–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. F. Chang, H. Tada, and K. Khalili, “The role of a pentanucleotide repeat sequence, AGGGAAGGGA, in the regulation of JC virus DNA replication,” Gene, vol. 148, no. 2, pp. 309–314, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. R. J. Frisque and F. A. White, “The molecular biology of JC virus cative agent of progressive multifocal leukencephalopathy,” in Molecular Neurovirology, R. Roos, Ed., Humana Press, Totowa, NJ, USA, 1992. View at Google Scholar
  18. R. Gosert, P. Kardas, E. O. Major, and H. H. Hirsch, “Rearranged JC virus noncoding control regions found in progressive multifocal leukoencephalopathy patient samples increase virus early gene expression and replication rate,” Journal of Virology, vol. 84, no. 20, pp. 10448–10456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. S. Ault and G. L. Stoner, “Two major types of JC virus defined in progressive multifocal leukoencephalopathy brain by early and late coding region DNA sequences,” Journal of General Virology, vol. 73, no. 10, pp. 2669–2678, 1992. View at Google Scholar · View at Scopus
  20. L. Gorelik, C. Reid, M. Testa et al., “Progressive multifocal leukoencephalopathy (PML) development is associated with mutations in JC virus capsid protein VP1 that change its receptor specificity,” The Journal of Infectious Diseases, vol. 204, no. 1, pp. 103–114, 2011. View at Google Scholar
  21. G. L. Stoner and C. F. Ryschkewitsch, “Capsid protein VP1 deletions in JC virus from two AIDS patients with progressive multifocal leukoencephalopathy,” Journal of Neurovirology, vol. 1, no. 2, pp. 189–194, 1995. View at Google Scholar · View at Scopus
  22. S. R. Sunyaev, A. Lugovskoy, K. Simon, and L. Gorelik, “Adaptive mutations in the JC virus protein capsid are associated with progressive multifocal leukoencephalopathy (PML),” PLoS Genetics, vol. 5, no. 2, Article ID e1000368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. J. Li and T. J. Kelly, “Simian virus 40 DNA replication in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 22, pp. 6973–6977, 1984. View at Google Scholar · View at Scopus
  24. D. Nathans and K. J. Danna, “Specific origin in SV40 DNA replication,” Nature, vol. 236, no. 68, pp. 200–202, 1972. View at Google Scholar · View at Scopus
  25. L. Vassilev and E. M. Johnson, “Mapping initiation sites of DNA replication in vivo using polymerase chain reaction amplification of nascent strand segments,” Nucleic Acids Research, vol. 17, no. 19, pp. 7693–7705, 1989. View at Google Scholar · View at Scopus
  26. B. Stillman, “Chromatin assembly during SV40 DNA replication in vitro,” Cell, vol. 45, no. 4, pp. 555–565, 1986. View at Google Scholar · View at Scopus
  27. D. H. Weinberg, K. L. Collins, P. Simancek et al., “Reconstitution of simian virus 40 DNA replication with purified proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 22, pp. 8692–8696, 1990. View at Publisher · View at Google Scholar · View at Scopus
  28. R. J. Frisque, G. L. Bream, and M. T. Cannella, “Human polyomavirus JC virus genome,” Journal of Virology, vol. 51, no. 2, pp. 458–469, 1984. View at Google Scholar · View at Scopus
  29. B. L. Padgett, D. L. Walker, G. M. ZuRhein, R. J. Eckroade, and B. H. Dessel, “Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy,” The Lancet, vol. 1, no. 7712, pp. 1257–1260, 1971. View at Google Scholar · View at Scopus
  30. B. L. Padgett, D. L. Walker, G. M. ZuRhein, and J. N. Varakis, “Differential neurooncogenicity of strains of JC virus, a human polyoma virus, in newborn Syrian hamsters,” Cancer Research, vol. 37, no. 3, pp. 718–720, 1977. View at Google Scholar · View at Scopus
  31. Y. Yogo, T. Kitamura, C. Sugimoto et al., “Isolation of a possible archetypal JC virus DNA sequence from nonimmunocompromised individuals,” Journal of Virology, vol. 64, no. 6, pp. 3139–3143, 1990. View at Google Scholar · View at Scopus
  32. J. D. Martin, D. M. King, J. M. Slauch, and R. J. Frisque, “Differences in regulatory sequences of naturally occurring JC virus variants,” Journal of Virology, vol. 53, no. 1, pp. 306–311, 1985. View at Google Scholar · View at Scopus
  33. N. N. Chen, C. F. Chang, G. L. Gallia et al., “Cooperative action of cellular proteins YB-1 and Purα with the tumor antigen of the human JC polyomavirus determines their interaction with the viral lytic control element,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 4, pp. 1087–1091, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. E. M. Johnson, “The Pur protein family: clues to function from recent studies on cancer and AIDS,” Anticancer Research A, vol. 23, no. 3, pp. 2093–2100, 2003. View at Google Scholar · View at Scopus
  35. E. M. Johnson, D. C. Daniel, and J. Gordon, “The Pur protein family: genetic and structural features in development and disease,” Journal of Cellular Physiology, vol. 228, no. 5, pp. 930–937, 2013. View at Publisher · View at Google Scholar
  36. K. Khalili, L. Del Valle, V. Muralidharan et al., “Purα is essential for postnatal brain development and developmentally coupled cellular proliferation as revealed by genetic inactivation in the mouse,” Molecular and Cellular Biology, vol. 23, no. 19, pp. 6857–6875, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. C. P. Krachmarov, L. G. Chepenik, S. Barr-Vagell, K. Khalili, and E. M. Johnson, “Activation of the JC virus Tat-responsive transcriptional control element by association of the Tat protein of human immunodeficiency virus 1 with cellular protein Purα,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 14112–14117, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. M. K. White, E. M. Johnson, and K. Khalili, “Multiple roles for Puralpha in cellular and viral regulation,” Cell Cycle, vol. 8, no. 3, pp. 1–7, 2009. View at Google Scholar · View at Scopus
  39. R. J. Frisque, “Nucleotide sequence of the region encompassing the JC virus origin of DNA replication,” Journal of Virology, vol. 46, no. 1, pp. 170–176, 1983. View at Google Scholar · View at Scopus
  40. C. Myers, R. J. Frisque, and R. R. Arthur, “Direct isolation and characterization of JC virus from urine samples of renal and bone marrow transplant patients,” Journal of Virology, vol. 63, no. 10, pp. 4445–4449, 1989. View at Google Scholar · View at Scopus
  41. S. A. Houff and J. R. Berger, “The bone marrow, B cells, and JC virus,” Journal of NeuroVirology, vol. 14, no. 5, pp. 341–343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. A. Houff, E. O. Major, D. A. Katz et al., “Involvement of JC virus-infected mononuclear cells from the bone marrow and spleen in the pathogenesis of progressive multifocal leukoencephalopathy,” The New England Journal of Medicine, vol. 318, no. 5, pp. 301–305, 1988. View at Google Scholar · View at Scopus
  43. A. Marzocchetti, C. Wuthrich, C. S. Tan et al., “Rearrangement of the JC virus regulatory region sequence in the bone marrow of a patient with rheumatoid arthritis and progressive multifocal leukoencephalopathy,” Journal of NeuroVirology, vol. 14, no. 5, pp. 455–458, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. E. M. Schneider and K. Dorries, “High frequency of polyomavirus infection in lymphoid cell preparations after allogeneic bone marrow transplantation,” Transplantation Proceedings, vol. 25, no. 1, part 2, pp. 1271–1273, 1993. View at Google Scholar · View at Scopus
  45. C. S. Tan, B. J. Dezube, P. Bhargava et al., “Detection of JC virus DNA and proteins in the bone marrow of HIV-positive and HIV-negative patients: implications for viral latency and neurotropic transformation,” Journal of Infectious Diseases, vol. 199, no. 6, pp. 881–888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. L. Chapagain and V. R. Nerurkar, “Human polyomavirus JC (JCV) infection of luman B lymphocytes: a possible mechanism for JCV transmigration across the blood-brain barrier,” Journal of Infectious Diseases, vol. 202, no. 2, pp. 184–191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. C. G. Monaco, W. J. Atwood, M. Gravell, C. S. Tornatore, and E. O. Major, “JC virus infection of hematopoietic progenitor cells, primary B lymphocytes, and tonsillar stromal cells: implications for viral latency,” Journal of Virology, vol. 70, no. 10, pp. 7004–7012, 1996. View at Google Scholar · View at Scopus
  48. P. Rieckmann, U. Michel, and J. H. Kehrl, “Regulation of JC virus expression in B lymphocytes,” Journal of Virology, vol. 68, no. 1, pp. 217–222, 1994. View at Google Scholar · View at Scopus
  49. K. Dorries, E. Vogel, S. Gunther, and S. Czub, “Infection of human polyomaviruses JC and BK in peripheral blood leukocytes from immunocompetent individuals,” Virology, vol. 198, no. 2, pp. 59–70, 1994. View at Google Scholar · View at Scopus
  50. G. S. Ault and G. L. Stoner, “Human polyomavirus JC promoter/enhancer rearrangement patterns from progressive multifocal leukoencephalopathy brain are unique derivatives of a single archetypal structure,” Journal of General Virology, vol. 74, part 8, pp. 1499–1507, 1993. View at Google Scholar · View at Scopus
  51. Y. Hirose, H. Kiyoi, K. Itoh, K. Kato, H. Saito, and T. Naoe, “B-cell precursors differentiated from cord blood CD34+ cells are more immature than those derived from granulocyte colony-stimulating factor-mobilized peripheral blood CD34+ cells,” Immunology, vol. 104, no. 4, pp. 410–417, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. M. T. Little, S. Langlois, R. D. Wilson, and P. M. Lansdorp, “Frequency of fetal cells in sorted subpopulations of nucleated erythroid and CD34+ hematopoietic progenitor cells from maternal peripheral blood,” Blood, vol. 89, no. 7, pp. 2347–2358, 1997. View at Google Scholar · View at Scopus
  53. C. Sirard, T. Lapidot, J. Vormoor et al., “Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis,” Blood, vol. 87, no. 4, pp. 1539–1548, 1996. View at Google Scholar · View at Scopus
  54. J. T. Newman and R. J. Frisque, “Identification of JC virus variants in multiple tissues of pediatric and adult PML patients,” Journal of Medical Virology, vol. 58, no. 1, pp. 79–86, 1999. View at Google Scholar
  55. F. A. White III, M. Ishaq, G. L. Stoner, and R. J. Frisque, “JC virus DNA is present in many human brain samples from patients without progressive multifocal leukoencephalopathy,” Journal of Virology, vol. 66, no. 10, pp. 5726–5734, 1992. View at Google Scholar · View at Scopus
  56. G. Perez-Liz, L. Del Valle, A. Gentilella, S. Croul, and K. Khalili, “Detection of JC virus DNA fragments but not proteins in normal brain tissue,” Annals of Neurology, vol. 64, no. 4, pp. 379–387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. L. Chapagain, S. Verma, F. Mercier, R. Yanagihara, and V. R. Nerurkar, “Polyomavirus JC infects human brain microvascular endothelial cells independent of serotonin receptor 2A,” Virology, vol. 364, no. 1, pp. 55–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. D. T. Weaver, S. C. Fields-Berry, and M. L. DePamphilis, “The termination region for SV40 DNA replication directs the mode of separation for the two sibling molecules,” Cell, vol. 41, no. 2, pp. 565–575, 1985. View at Google Scholar · View at Scopus
  59. D. P. Tapper and M. L. DePamphilis, “Preferred DNA sites are involved in the arrest and initiation of DNA synthesis during replication of SV40 DNA,” Cell, vol. 22, no. 1, part 1, pp. 97–108, 1980. View at Google Scholar · View at Scopus
  60. D. T. Weaver and M. L. DePamphilis, “The role of palindromic and non-palindromic sequences in arresting DNA synthesis in vitro and in vivo,” Journal of Molecular Biology, vol. 180, no. 4, pp. 961–986, 1984. View at Google Scholar · View at Scopus
  61. K. Herzberg, V. I. Bashkirov, M. Rolfsmeier et al., “Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks,” Molecular and Cellular Biology, vol. 26, no. 22, pp. 8396–8409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. K. A. Hoadley, Y. Xue, C. Ling, M. Takata, W. Wang, and J. L. Keck, “Defining the molecular interface that connects the Fanconi anemia protein FANCM to the Bloom syndrome dissolvasome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 12, pp. 4437–4442, 2012. View at Publisher · View at Google Scholar
  63. A. S. . Kamath-Loeb, J. C. Shen, M. W. Schmitt, and L. A. Loeb, “The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase delta,” The Journal of Biological Chemistry, vol. 287, no. 15, pp. 12480–12490, 2012. View at Publisher · View at Google Scholar
  64. E. Sonoda, H. Hochegger, A. Saberi, Y. Taniguchi, and S. Takeda, “Differential usage of non-homologous end-joining and homologous recombination in double strand break repair,” DNA Repair, vol. 5, no. 9-10, pp. 1021–1029, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Weitao, M. Budd, L. L. M. Hoopes, and J. L. Campbell, “Dna2 helicase/nuclease causes replicative fork stalling and double-strand breaks in the ribosomal DNA of Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 278, no. 25, pp. 22513–22522, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. D. T. Weaver and M. L. DePamphilis, “Specific sequences in native DNA that arrest synthesis by DNA polymerase alpha,” Journal of Biological Chemistry, vol. 257, no. 4, pp. 2075–2086, 1982. View at Google Scholar · View at Scopus
  67. S. N. Shah, P. L. Opresko, X. Meng, M. Y. W. T. Lee, and K. A. Eckert, “DNA structure and the Werner protein modulate human DNA polymerase delta-dependent replication dynamics within the common fragile site FRA16D,” Nucleic Acids Research, vol. 38, no. 4, pp. 1149–1162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Voineagu, V. Narayanan, K. S. Lobachev, and S. M. Mirkin, “Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 29, pp. 9936–9941, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Walsh, X. Wang, M. Y. Lee, and K. A. Eckert, “Mechanism of replicative DNA polymerase delta pausing and a potential role for DNA polymerase kappa in common fragile site replication,” Journal of Molecular Biology, vol. 425, no. 2, pp. 232–243, 2013. View at Google Scholar
  70. Y. Karpenshif and K. A. Bernstein, “From yeast to mammals: recent advances in genetic control of homologous recombination,” DNA Repair, vol. 11, no. 10, pp. 781–788, 2012. View at Publisher · View at Google Scholar
  71. C. Allen, A. K. Ashley, R. Hromas, and J. A. Nickoloff, “More forks on the road to replication stress recovery,” Journal of Molecular Cell Biology, vol. 3, no. 1, pp. 4–12, 2011. View at Google Scholar
  72. M. Zuker, “Mfold web server for nucleic acid folding and hybridization prediction,” Nucleic Acids Research, vol. 31, no. 13, pp. 3406–3415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. S. M. Mirkin, “DNA structures, repeat expansions and human hereditary disorders,” Current Opinion in Structural Biology, vol. 16, no. 3, pp. 351–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Jenab and E. M. Johnson, “A dual-circular plasmid structure dependent on DNA replication generated in monkey COS7 cells and cell extracts,” Biochemical and Biophysical Research Communications, vol. 160, no. 1, pp. 53–59, 1989. View at Google Scholar · View at Scopus
  75. R. Holliday, “The recombination, repair and modification of DNA,” DNA Repair, vol. 10, no. 10, pp. 993–999, 2011. View at Publisher · View at Google Scholar
  76. J. R. Berger and D. B. Clifford, “The manifold faces of PML and the challenge of diagnosis,” Neurology, vol. 77, no. 23, pp. 2006–2007, 2011. View at Publisher · View at Google Scholar
  77. M. Chowdhury, J. P. Taylor, H. Tada et al., “Regulation of the human neurotropic virus promoter by JCV-T antigen and HIV-1 tat protein,” Oncogene, vol. 5, no. 12, pp. 1737–1742, 1990. View at Google Scholar · View at Scopus
  78. D. C. Daniel, Y. Kinoshita, M. A. Khan et al., “Internalization of exogenous human immunodeficiency virus-1 protein, Tat, by KG-1 oligodendroglioma cells followed by stimulation of DNA replication initiated at the JC virus origin,” DNA and Cell Biology, vol. 23, no. 12, pp. 858–867, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. G. L. Gallia, E. M. Johnson, and K. Khalili, “Survey and summary: puralpha: a multifunctional single-stranded DNA- and RNA-binding protein,” Nucleic Acids Research, vol. 28, no. 17, pp. 3197–3205, 2000. View at Publisher · View at Google Scholar
  80. G. L. Gallia, M. Safak, and K. Khalili, “Interaction of the single-stranded DNA-binding protein Purα with the human polyomavirus JC virus early protein T-antigen,” Journal of Biological Chemistry, vol. 273, no. 49, pp. 32662–32669, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. D. C. Daniel, M. J. Wortman, R. J. Schiller et al., “Coordinate effects of human immunodeficiency virus type 1 protein Tat and cellular protein Purα on DNA replication initiated at the JC virus origin,” Journal of General Virology, vol. 82, part 7, pp. 1543–1553, 2001. View at Google Scholar · View at Scopus
  82. F. N. Engsig, A. B. E. Hansen, L. H. Omland et al., “Incidence, clinical presentation, and outcome of progressive multifocal leukoencephalopathy in HIV-infected patients during the highly active antiretroviral therapy era: a nationwide cohort study,” Journal of Infectious Diseases, vol. 199, no. 1, pp. 77–83, 2009. View at Publisher · View at Google Scholar · View at Scopus