Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 257184, 10 pages
http://dx.doi.org/10.1155/2013/257184
Review Article

Autoantibodies and the Immune Hypothesis in Psychotic Brain Diseases: Challenges and Perspectives

1Neuroimmunology Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children’s Hospital at Westmead, University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
2Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia
3The Walker Unit, Concord Centre for Mental Health, Concord West, NSW 2138, Australia
4Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia

Received 22 May 2013; Revised 23 July 2013; Accepted 24 July 2013

Academic Editor: Carlos Barcia

Copyright © 2013 Karrnan Pathmanandavel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. B. First, A. Frances, and H. A. Pincus, “Schizophrenia and other psychotic disorders,” in DSM-IV-TR Guidebook, chapter 11, American Psychiatric, Arlington, Va, USA, 2004. View at Google Scholar
  2. J. van Os and S. Kapur, “Schizophrenia,” The Lancet, vol. 374, no. 9690, pp. 635–645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Löthgren, “Economic evidence in psychotic disorders: a review,” European Journal of Health Economics, vol. 5, no. 1, supplement, pp. S67–S74, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Rössler, H. H. Joachim Salize, J. van Os, and A. Riecher-Rössler, “Size of burden of schizophrenia and psychotic disorders,” European Neuropsychopharmacology, vol. 15, no. 4, pp. 399–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Rapoport, A. M. Addington, S. Frangou, and M. R. C. Psych, “The neurodevelopmental model of schizophrenia: update 2005,” Molecular Psychiatry, vol. 10, no. 5, pp. 434–449, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Pantelis, M. Yücel, E. Bora et al., “Neurobiological markers of illness onset in psychosis and schizophrenia: the search for a moving target,” Neuropsychology Review, vol. 19, no. 3, pp. 385–398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J.-M. Beaulieu and R. R. Gainetdinov, “The physiology, signaling, and pharmacology of dopamine receptors,” Pharmacological Reviews, vol. 63, no. 1, pp. 182–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Seeman, “Dopamine receptors and the dopamine hypothesis of schizophrenia,” Synapse, vol. 1, no. 2, pp. 133–152, 1987. View at Google Scholar · View at Scopus
  9. F. López-Muñoz and C. Álamo, “Neurobiological background for the development of new drugs in schizophrenia,” Clinical Neuropharmacology, vol. 34, no. 3, pp. 111–126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. K. J. Friston, “Schizophrenia and the disconnection hypothesis,” Acta Psychiatrica Scandinavica, Supplement, vol. 99, no. 395, pp. 68–79, 1999. View at Google Scholar · View at Scopus
  11. L. V. Kristiansen, I. Huerta, M. Beneyto, and J. H. Meador-Woodruff, “NMDA receptors and schizophrenia,” Current Opinion in Pharmacology, vol. 7, no. 1, pp. 48–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. T. Coyle, “Glutamate and schizophrenia: beyond the dopamine hypothesis,” Cellular and Molecular Neurobiology, vol. 26, no. 4–6, pp. 365–384, 2006. View at Google Scholar · View at Scopus
  13. R. D. Strous and Y. Shoenfeld, “Schizophrenia, autoimmunity and immune system dysregulation: a comprehensive model updated and revisited,” Journal of Autoimmunity, vol. 27, no. 2, pp. 71–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Jones, B. J. Mowry, M. P. Pender, and J. M. Greer, “Immune dysregulation and self-reactivity in schizophrenia: do some cases of schizophrenia have an autoimmune basis?” Immunology and Cell Biology, vol. 83, no. 1, pp. 9–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. H. H. Fudenberg, H. D. Whitten, E. Merler, and O. Farmati, “Is schizophrenia an immunologic receptor disorder?” Medical Hypotheses, vol. 12, no. 1, pp. 85–93, 1983. View at Google Scholar · View at Scopus
  16. M. S. Zandi, S. R. Irani, B. Lang et al., “Disease-relevant autoantibodies in first episode schizophrenia,” Journal of Neurology, vol. 258, no. 4, pp. 686–688, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Tsutsui, T. Kanbayashi, K. Tanaka et al., “Anti-NMDA-receptor antibody detected in encephalitis, schizophrenia, and narcolepsy with psychotic features,” BMC Psychiatry, vol. 12, article 37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Steiner, M. Walter, W. Glanz et al., “Increased prevalence of diverse N-methyl-D-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: specific relevance of IgG NR1a antibodies for distinction from N-methyl-D-aspartate glutamate receptor encephalitis,” JAMA Psychiatry, vol. 70, no. 3, pp. 1–8, 2013. View at Google Scholar
  19. D. K. Kinney, K. Hintz, E. M. Shearer et al., “A unifying hypothesis of schizophrenia: abnormal immune system development may help explain roles of prenatal hazards, post-pubertal onset, stress, genes, climate, infections, and brain dysfunction,” Medical Hypotheses, vol. 74, no. 3, pp. 555–563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Rothermundt, V. Arolt, and T. A. Bayer, “Review of immunological and immunopathological findings in schizophrenia,” Brain, Behavior, and Immunity, vol. 15, no. 4, pp. 319–339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Ganguli, J. S. Brar, and B. S. Rabin, “Immune abnormalities in schizophrenia: evidence for the autoimmune hypothesis,” Harvard Review of Psychiatry, vol. 2, no. 2, pp. 70–83, 1994. View at Google Scholar · View at Scopus
  22. K. A. Menninger, “The schizophrenic syndrome as a product of acute infectious disease,” Archives of Neurology and Psychiatry, vol. 20, no. 3, pp. 464–481, 1928. View at Google Scholar
  23. D. G. Kirch, “Infection and autoimmunity as etiologic factors in schizophrenia: a review and reappraisal,” Schizophrenia Bulletin, vol. 19, no. 2, pp. 355–370, 1993. View at Google Scholar · View at Scopus
  24. S.-J. Chen, Y.-L. Chao, C.-Y. Chen et al., “Prevalence of autoimmune diseases in in-patients with schizophrenia: nationwide population-based study,” British Journal of Psychiatry, vol. 200, no. 5, pp. 374–380, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. W. W. Eaton, M. G. Pedersen, P. R. Nielsen, and P. B. Mortensen, “Autoimmune diseases, bipolar disorder, and non-affective psychosis,” Bipolar Disorders, vol. 12, no. 6, pp. 638–646, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. W. W. Eaton, M. Byrne, H. Ewald et al., “Association of schizophrenia and autoimmune diseases: linkage of Danish national registers,” American Journal of Psychiatry, vol. 163, no. 3, pp. 521–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Busse, M. Busse, K. Schiltz et al., “Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations?” Brain, Behavior, and Immunity, vol. 26, no. 8, pp. 1273–1279, 2012. View at Google Scholar
  28. F. Dickerson, C. Stallings, A. Origoni et al., “C-reactive protein is elevated in schizophrenia,” Schizophrenia Research, vol. 143, no. 1, pp. 198–202, 2013. View at Google Scholar
  29. S. G. Fillman, N. Cloonan, V. S. Catts et al., “Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia,” Molecular Psychiatry, vol. 18, no. 2, pp. 206–214, 2013. View at Google Scholar
  30. L. Zuliani, F. Graus, B. Giometto, C. Bien, and A. Vincent, “Central nervous system neuronal surface antibody associated syndromes: review and guidelines for recognition,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 83, no. 6, pp. 638–645, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Vincent, C. G. Bien, S. R. Irani, and P. Waters, “Autoantibodies associated with diseases of the CNS: new developments and future challenges,” The Lancet Neurology, vol. 10, no. 8, pp. 759–772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Lancaster and J. Dalmau, “Neuronal autoantigens—pathogenesis, associated disorders and antibody testing,” Nature Reviews, vol. 8, no. 7, pp. 380–390, 2012. View at Google Scholar
  33. E. Lancaster, E. Martinez-Hernandez, M. J. Titulaer et al., “Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome,” Neurology, vol. 77, no. 18, pp. 1698–1701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Dale, V. Merheb, S. Pillai et al., “Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders,” Brain, vol. 135, no. 11, pp. 3453–3468.
  35. S. R. Irani, P. Pettingill, K. A. Kleopa et al., “Morvan syndrome: clinical and serological observations in 29 cases,” Annals of Neurology, vol. 72, no. 2, pp. 241–255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Gaughran, “Immunity and schizophrenia: autoimmunity, cytokines, and immune responses,” International Review of Neurobiology, vol. 52, pp. 275–302, 2002. View at Google Scholar · View at Scopus
  37. W. F. Hickey, “Basic principles of immunological surveillance of the normal central nervous system,” GLIA, vol. 36, no. 2, pp. 118–124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. S. S. Ousman and P. Kubes, “Immune surveillance in the Central Nervous System,” Nature Neuroscience, vol. 15, no. 8, pp. 1096–1101, 2012. View at Google Scholar
  39. K. Bechter, H. Reiber, S. Herzog, D. Fuchs, H. Tumani, and H. G. Maxeiner, “Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood-CSF barrier dysfunction,” Journal of Psychiatric Research, vol. 44, no. 5, pp. 321–330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Daneman, “The blood-brain barrier in health and disease,” Annals of Neurology, vol. 72, no. 5, pp. 648–672, 2012. View at Google Scholar
  41. F. Brilot, “Inflammation and autoimmunity: a nervous system perspective,” in Inflammatory and Autoimmune Disorders of the Nervous System in Children, chapter 1, pp. 1–13, Keith Press, London, England, 2010. View at Google Scholar
  42. S. Ripke, A. R. Sanders, K. S. Kendler et al., “Genome-wide association study identifies five new schizophrenia loci,” Nature Genetics, vol. 43, no. 10, pp. 969–976, 2011. View at Google Scholar
  43. J. Liu, J. Li, T. Li et al., “CTLA-4 confers a risk of recurrent schizophrenia, major depressive disorder and bipolar disorder in the Chinese Han population,” Brain, Behavior, and Immunity, vol. 25, no. 3, pp. 429–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Michel, M. J. Schmidt, and K. Mirnics, “Immune system gene dysregulation in autism and schizophrenia,” Developmental Neurobiology, vol. 72, no. 10, pp. 1277–1287, 2012. View at Google Scholar
  45. C. M. Gilvarry, P. C. Sham, P. B. Jones et al., “Family history of autoimmune diseases in psychosis,” Schizophrenia Research, vol. 19, no. 1, pp. 33–40, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Martínez-Gras, F. García-Sánchez, C. Guaza et al., “Altered immune function in unaffected first-degree biological relatives of schizophrenia patients,” Psychiatry Research, vol. 200, no. 2-3, pp. 1022–1025, 2012. View at Google Scholar
  47. S. Potvin, E. Stip, A. A. Sepehry, A. Gendron, R. Bah, and E. Kouassi, “Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review,” Biological Psychiatry, vol. 63, no. 8, pp. 801–808, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. M. Fineberg and L. M. Ellman, “Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia,” Biological Psychiatry, vol. 73, no. 10, pp. 951–66, 2013. View at Publisher · View at Google Scholar
  49. B. J. Miller, P. Buckley, W. Seabolt, A. Mellor, and B. Kirkpatrick, “Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects,” Biological Psychiatry, vol. 70, no. 7, pp. 663–671, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. R. B. Mansur, A. Zugman, E. D. M. Asevedo et al., “Cytokines in schizophrenia: possible role of anti-inflammatory medications in clinical and preclinical stages,” Psychiatry and Clinical Neurosciences, vol. 66, no. 4, pp. 247–260, 2012. View at Google Scholar
  51. R. S. Smith and M. Maes, “The Macrophage-T-lymphocyte theory of schizophrenia: additional evidence,” Medical Hypotheses, vol. 45, no. 2, pp. 135–141, 1995. View at Publisher · View at Google Scholar · View at Scopus
  52. B. García-Bueno, M. Bioque, K. S. Mac-Dowell et al., “Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia,” Schizophrenia Bulletin, 2013. View at Publisher · View at Google Scholar
  53. J. Steiner, C. Mawrin, A. Ziegeler et al., “Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization,” Acta Neuropathologica, vol. 112, no. 3, pp. 305–316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. L. R. Frick, K. Williams, and C. Pittenger, “Microglial dysregulation in psychiatric disease,” Clinical and Developmental Immunology, vol. 2013, Article ID 608654, 10 pages, 2013. View at Publisher · View at Google Scholar
  55. U. Meyer, M. J. Schwarz, and N. Müller, “Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond,” Pharmacology and Therapeutics, vol. 132, no. 1, pp. 96–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. I. E. Sommer, L. De Witte, M. Begemann, and R. S. Kahn, “Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis,” Journal of Clinical Psychiatry, vol. 73, no. 4, pp. 414–419, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Müller, M. Empl, M. Riedel, M. Schwarz, and M. Ackenheil, “Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors in schizophrenia,” European Archives of Psychiatry and Clinical Neuroscience, vol. 247, no. 6, pp. 308–313, 1997. View at Google Scholar · View at Scopus
  58. T. Pollmächer, M. Haack, A. Schuld, T. Kraus, and D. Hinze-Selch, “Effects of antipsychotic drugs on cytokine networks,” Journal of Psychiatric Research, vol. 34, no. 6, pp. 369–382, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. Ł. Drzyzga, E. Obuchowicz, A. Marcinowska, and Z. S. Herman, “Cytokines in schizophrenia and the effects of antipsychotic drugs,” Brain, Behavior, and Immunity, vol. 20, no. 6, pp. 532–545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. J. U. Ohaeri and A. O. Akanji, “Metabolic syndrome in severe mental disorders,” Metabolic Syndrome and Related Disorders, vol. 9, no. 2, pp. 91–98, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Saha, D. Chant, and J. McGrath, “A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time?” Archives of General Psychiatry, vol. 64, no. 10, pp. 1123–1131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. B. J. Miller, N. Culpepper, M. H. Rapaport, and P. Buckley, “Prenatal inflammation and neurodevelopment in schizophrenia: a review of human studies,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 42, pp. 92–100, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Grose, O. Itani, and C. P. Weiner, “Prenatal diagnosis of fetal infection: advances from amniocentesis to cordocentesis—congenital toxoplasmosis, rubella, cytomegalovirus, varicella virus, parvovirus and human immunodeficiency virus,” Pediatric Infectious Disease Journal, vol. 8, no. 7, pp. 459–468, 1989. View at Google Scholar · View at Scopus
  64. P. Boksa, “Effects of prenatal infection on brain development and behavior: a review of findings from animal models,” Brain, Behavior, and Immunity, vol. 24, no. 6, pp. 881–897, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. G. M. Khandaker, J. Zimbron, G. Lewis, and P. B. Jones, “Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies,” Psychological Medicine, vol. 43, no. 2, pp. 239–257, 2013. View at Google Scholar
  66. J. Dalmau, A. J. Gleichman, E. G. Hughes et al., “Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies,” The Lancet Neurology, vol. 7, no. 12, pp. 1091–1098, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Vincent, J. Palace, and D. Hilton-Jones, “Myasthenia gravis,” The Lancet, vol. 357, no. 9274, pp. 2122–2128, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Dalmau, E. Lancaster, E. Martinez-Hernandez, M. R. Rosenfeld, and R. Balice-Gordon, “Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis,” The Lancet Neurology, vol. 10, no. 1, pp. 63–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Lehmann-Facius, “Über die liquordiagnose der schizophrenien,” Klinische Wochenschrift, vol. 16, no. 47, pp. 1646–1648, 1937. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Tanaka, H. Matsunaga, M. Kimura et al., “Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders,” Journal of Neuroimmunology, vol. 141, no. 1-2, pp. 155–164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Brimberg, I. Benhar, A. Mascaro-Blanco et al., “Behavioral, pharmacological, and immunological abnormalities after streptococcal exposure: a novel rat model of sydenham chorea and related neuropsychiatric disorders,” Neuropsychopharmacology, vol. 37, no. 9, pp. 2076–2087, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Brilot, V. Merheb, A. Ding, T. Murphy, and R. C. Dale, “Antibody binding to neuronal surface in Sydenham chorea, but not in PANDAS or Tourette syndrome,” Neurology, vol. 76, no. 17, pp. 1508–1513, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. K. A. Kleopa, L. B. Elman, B. Lang, A. Vincent, and S. S. Scherer, “Neuromyotonia and limbic encephalitis sera target mature Shaker-type K+ channels: subunit specificity correlates with clinical manifestations,” Brain, vol. 129, no. 6, pp. 1570–1584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Dalmau, E. Tüzün, H. Wu et al., “Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma,” Annals of Neurology, vol. 61, no. 1, pp. 25–36, 2007. View at Google Scholar
  75. K. A. McLaughlin, T. Chitnis, J. Newcombe et al., “Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis,” Journal of Immunology, vol. 183, no. 6, pp. 4067–4076, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. R. C. Dale, S. R. Irani, F. Brilot et al., “N-methyl-D-aspartate receptor antibodies in pediatric dyskinetic encephalitis lethargica,” Annals of Neurology, vol. 66, no. 5, pp. 704–709, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Brilot, R. C. Dale, R. C. Selter et al., “Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease,” Annals of Neurology, vol. 66, no. 6, pp. 833–842, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. S. R. Irani, S. Alexander, P. Waters et al., “Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia,” Brain, vol. 133, no. 9, pp. 2734–2748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. P. J. Waters, A. McKeon, M. I. Leite et al., “Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays,” Neurology, vol. 78, no. 9, pp. 665–671, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. B. M. Ances, R. Vitaliani, R. A. Taylor et al., “Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates,” Brain, vol. 128, no. 8, pp. 1764–1777, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Z. Lai, M. G. M. Huijbers, E. Lancaster et al., “Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series,” Lancet Neurology, vol. 9, no. 8, pp. 776–785, 2010. View at Google Scholar
  82. L. Mikasova, P. De Rossi, D. Bouchet et al., “Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis,” Brain, vol. 135, no. 5, pp. 1606–1621, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. E. G. Hughes, X. Peng, A. J. Gleichman et al., “Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis,” The Journal of Neuroscience, vol. 30, no. 17, pp. 5866–5875, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. F. Graus, A. Saiz, and J. Dalmau, “Antibodies and neuronal autoimmune disorders of the CNS,” Journal of Neurology, vol. 257, no. 4, pp. 509–517, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Lancaster, E. Martinez-Hernandez, and J. Dalmau, “Encephalitis and antibodies to synaptic and neuronal cell surface proteins,” Neurology, vol. 77, no. 2, pp. 179–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. A. J. Gleichman, L. A. Spruce, J. Dalmau et al., “Anti-NMDA receptor encephalitis antibody binding is dependent on amino acid identity of a small region within the GluN1 amino terminal domain,” The Journal of Neuroscience, vol. 32, no. 32, pp. 11082–11094, 2012. View at Google Scholar
  87. M. Hutchinson, P. Waters, J. McHugh et al., “Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody,” Neurology, vol. 71, no. 16, pp. 1291–1292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Z. Lai, E. G. Hughes, X. Y. Peng et al., “AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location,” Annals of Neurology, vol. 65, no. 4, pp. 424–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Lancaster, M. Lai, X. Peng et al., “Antibodies to the GABAB receptor in limbic encephalitis with seizures: case series and characterisation of the antigen,” The Lancet Neurology, vol. 9, no. 1, pp. 67–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. M. J. Titulaer, L. McCracken, I. Gabilondo et al., “Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study,” Lancet Neurology, vol. 12, no. 2, pp. 157–165, 2013. View at Google Scholar
  91. M. S. Gable, H. Sheriff, J. Dalmau, D. H. Tilley, and C. A. Glaser, “The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the california encephalitis project,” Clinical Infectious Diseases, vol. 54, no. 7, pp. 899–904, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Dalmau and M. R. Rosenfeld, “Paraneoplastic syndromes of the CNS,” The Lancet Neurology, vol. 7, no. 4, pp. 327–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. B. R. Lennox, A. J. Coles, and A. Vincent, “Antibody-mediated encephalitis: a treatable cause of schizophrenia,” The British Journal of Psychiatry, vol. 200, no. 2, pp. 92–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. M. J. Titulaer, M. S. Kayser, and J. Dalmau, “Prevalence and treatment of anti-NMDA receptor encephalitis,” Lancet Neurology, vol. 12, no. 5, pp. 425–426, 2013. View at Google Scholar
  95. E. Martinez-Hernandez, J. Horvath, Y. Shiloh-Malawsky, N. Sangha, M. Martinez-Lage, and J. Dalmau, “Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis,” Neurology, vol. 77, no. 6, pp. 589–593, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. Z. Liba, V. Sebronova, V. Komarek et al., “Prevalence and treatment of anti-NMDA receptor encephalitis,” Lancet Neurology, vol. 12, no. 5, pp. 424–425, 2013. View at Google Scholar
  97. S. R. Irani and A. Vincent, “NMDA receptor antibody encephalitis,” Current Neurology and Neuroscience Reports, vol. 11, no. 3, pp. 298–304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Nikolaus, C. Antke, and H.-W. Müller, “In vivo imaging of synaptic function in the central nervous system. I. Movement disorders and dementia,” Behavioural Brain Research, vol. 204, no. 1, pp. 1–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Nikolaus, C. Antke, and H.-W. Müller, “In vivo imaging of synaptic function in the central nervous system: II. Mental and affective disorders,” Behavioural Brain Research, vol. 204, no. 1, pp. 32–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. J. C. Masdeu, A. Gonzalez-Pinto, C. Matute et al., “Serum IgG antibodies against the NR1 subunit of the NMDA receptor not detected in schizophrenia,” American Journal of Psychiatry, vol. 169, pp. 1120–1121, 2012. View at Google Scholar
  101. J. Rhoads, H. Guirgis, C. McKnight, and A.-M. Duchemin, “Lack of anti-NMDA receptor autoantibodies in the serum of subjects with schizophrenia,” Schizophrenia Research, vol. 129, no. 2-3, pp. 213–214, 2011. View at Publisher · View at Google Scholar · View at Scopus