Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 340751, 9 pages
http://dx.doi.org/10.1155/2013/340751
Research Article

Correlation of Increased Blood Levels of GITR and GITRL with Disease Severity in Patients with Primary Sjögren’s Syndrome

Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China

Received 3 May 2013; Accepted 20 June 2013

Academic Editor: Guixiu Shi

Copyright © 2013 Xiaoxia Gan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Nocentini, L. Giunchi, S. Ronchetti et al., “A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 12, pp. 6216–6221, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Valzasina, C. Guiducci, H. Dislich, N. Killeen, A. D. Weinberg, and M. P. Colombo, “Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR,” Blood, vol. 105, no. 7, pp. 2845–2851, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Ronchetti, O. Zollo, S. Bruscoli et al., “Frontline: GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations,” European Journal of Immunology, vol. 34, no. 3, pp. 613–622, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K. E. Pollok, Y.-J. Kim, Z. Zhou et al., “Inducible T cell antigen 4-1BB: analysis of expression and function,” Journal of Immunology, vol. 150, no. 3, pp. 771–781, 1993. View at Google Scholar · View at Scopus
  5. M. Croft, “Control of Immunity by the TNFR-related molecule OX40 (CD134),” Annual Review of Immunology, vol. 28, pp. 57–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Tone, Y. Tone, E. Adams et al., “Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 15059–15064, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. L. M. Snell, G. H. Y. Lin, A. J. McPherson, T. J. Moraes, and T. H. Watts, “T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy,” Immunological Reviews, vol. 244, no. 1, pp. 197–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Suvas, B. Kim, P. P. Sarangi, M. Tone, H. Waldmann, and B. T. Rouse, “In vivo kinetics of GITR and GITR ligand expression and their functional significance in regulating viral immunopathology,” Journal of Virology, vol. 79, no. 18, pp. 11935–11942, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Nocentini and C. Riccardi, “GITR: a modulator of immune response and inflammation,” Advances in Experimental Medicine and Biology, vol. 647, pp. 156–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Kamimura, H. Iwai, J. Piao, M. Hashiguchi, and M. Azuma, “The glucocorticoid-induced TNF receptor-related protein (GITR)-GITR ligand pathway acts as a mediator of cutaneous dendritic cell migration and promotes T cell-mediated acquired immunity,” Journal of Immunology, vol. 182, no. 5, pp. 2708–2716, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Chattopadhyay, U. A. Ramagopal, M. Brenowitz, S. G. Nathenson, and S. C. Almo, “Evolution of GITRL immune function: murine GITRL exhibits unique structural and biochemical properties within the TNF superfamily,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 635–640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Zhou, Y. Tone, X. Song et al., “Structural basis for ligand-mediated mouse GITR activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 641–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. M. Moutsopoulos, “Sjogren's syndrom,” in Harrison's Principles of Internal Medicine, pp. 2107–2109, McGraw-Hill, 2008. View at Google Scholar
  14. F. Kanamaru, P. Youngnak, M. Hashiguchi et al., “Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells,” Journal of Immunology, vol. 172, no. 12, pp. 7306–7314, 2004. View at Google Scholar · View at Scopus
  15. A. P. Kohm, J. S. Williams, and S. D. Miller, “Cutting edge: ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 172, no. 8, pp. 4686–4690, 2004. View at Google Scholar · View at Scopus
  16. S. Cuzzocrea, E. Ayroldi, R. Di Paola et al., “Role of glucocorticoid-induced TNF receptor family gene (GITR) in collagen-induced arthritis,” The FASEB Journal, vol. 19, no. 10, pp. 1253–1265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. You, L. Poulton, S. Cobbold et al., “Key role of the GITR/GITRLigand pathway in the development of murine autoimmune diabetes: a potential therapeutic target,” PLoS ONE, vol. 4, no. 11, Article ID e7848, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Lei, X. Lingxiao, Z. Xiaojun et al., “Correlation of circulating glucocorticoid-induced TNFR-related protein ligand levels with disease activity in patients with systemic lupus erythematosus,” Clinical and Developmental Immunology, vol. 2012, Article ID 265868, 2012. View at Publisher · View at Google Scholar
  19. C. Vitali, S. Bombardieri, R. Jonsson et al., “Classification criteria for Sjogren's syndrome: a revised version of the European criteria proposed by the American-European Consensus Group,” Annals of the Rheumatic Diseases, vol. 61, no. 6, pp. 554–558, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. D. M. Chisholm and D. K. Mason, “Labial salivary gland biopsy in Sjogren's disease,” Journal of Clinical Pathology, vol. 21, no. 5, pp. 656–660, 1968. View at Google Scholar · View at Scopus
  21. S. Wang, Y. Shi, M. Yang et al., “Glucocorticoid-induced tumor necrosis factor receptor family-related protein exacerbates collagen-induced arthritis by enhancing the expansion of Th17 cells,” American Journal of Pathology, vol. 180, no. 3, pp. 1059–1067, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. K. Lee, B. K. Choi, Y. H. Kim et al., “Glucocorticoid-induced tumour necrosis factor receptor family-related receptor signalling exacerbates hapten-induced colitis by CD4+ T cells,” Immunology, vol. 119, no. 4, pp. 479–487, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, “Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance,” Nature Immunology, vol. 3, no. 2, pp. 135–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. G. P. Morris and Y.-C. M. Kong, “Interference with CD4+CD25+ T-cell-mediated tolerance to experimental autoimmune thyroiditis by glucocorticoid-induced tumor necrosis factor receptor monoclonal antibody,” Journal of Autoimmunity, vol. 26, no. 1, pp. 24–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Saito, S. Mori, F. Date et al., “Sjögren’s syndrome-like autoimmune sialadenitis in MRL-Faslpr mice is associated with expression of glucocorticoid-induced TNF receptor-related protein (GITR) ligand and 4-1BB ligand,” Autoimmunity, vol. 46, no. 4, pp. 231–237, 2013. View at Publisher · View at Google Scholar
  26. L. Santucci, M. Agostini, S. Bruscoli et al., “GITR modulates innate and adaptive mucosal immunity during the development of experimental colitis in mice,” Gut, vol. 56, no. 1, pp. 52–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Cuzzocrea, G. Nocentini, R. Di Paola et al., “Proinflammatory role of glucocorticoid-induced TNF receptor-related gene in acute lung inflammation,” Journal of Immunology, vol. 177, no. 1, pp. 631–641, 2006. View at Google Scholar · View at Scopus
  28. M. Patel, D. Xu, P. Kewin et al., “Glucocorticoid-induced TNFR family-related protein (GITR) activation exacerbates murine asthma and collagen-induced arthritis,” European Journal of Immunology, vol. 35, no. 12, pp. 3581–3590, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Fehérvari and S. Sakaguchi, “Development and function of CD25+CD4+ regulatory T cells,” Current Opinion in Immunology, vol. 16, no. 2, pp. 203–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Gavin and A. Rudensky, “Control of immune homeostasis by naturally arising regulatory CD4+ T cells,” Current Opinion in Immunology, vol. 15, no. 6, pp. 690–696, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Vasu, B. S. Prabhakar, and M. J. Holterman, “Targeted CTLA-4 engagement induces CD4+CD25+CTLA-4high T regulatory cells with target (allo)antigen specificity,” Journal of Immunology, vol. 173, no. 4, pp. 2866–2876, 2004. View at Google Scholar · View at Scopus
  32. M. Sarigul, V. Yazisiz, C. I. Başsorgun et al., “The numbers of Foxp3+ Treg cells are positively correlated with higher grade of infiltration at the salivary glands in primary Sjogren's syndrome,” Lupus, vol. 19, no. 2, pp. 138–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. E. M. Esparza and R. H. Arch, “Glucocorticoid-induced TNF receptor functions as a costimulatory receptor that promotes survival in early phases of T cell activation,” Journal of Immunology, vol. 174, no. 12, pp. 7869–7874, 2005. View at Google Scholar · View at Scopus