Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 535738, 9 pages
http://dx.doi.org/10.1155/2013/535738
Review Article

Epstein-Barr Virus in Systemic Autoimmune Diseases

Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark

Received 24 May 2013; Accepted 17 July 2013

Academic Editor: Guixiu Shi

Copyright © 2013 Anette Holck Draborg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Namjou, J. Kilpatrick, and J. B. Harley, “Genetics of clinical expression in SLE,” Autoimmunity, vol. 40, no. 8, pp. 602–612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. P. S. Ramos, A. H. Williams, J. T. Ziegler et al., “Genetic analyses of interferon pathway-related genes reveal multiple new loci associated with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 63, no. 7, pp. 2049–2057, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. L. Sestak, B. G. Fürnrohr, J. B. Harley, J. T. Merrill, and B. Namjou, “The genetics of systemic lupus erythematosus and implications for targeted therapy,” Annals of the Rheumatic Diseases, vol. 70, no. 1, pp. i37–i43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Cruz-Tapias, A. Rojas-Villarraga, S. Maier-Moore, and J.-M. Anaya, “HLA and Sjögren's syndrome susceptibility. A meta-analysis of worldwide studies,” Autoimmunity Reviews, vol. 11, no. 4, pp. 281–287, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Jacob and C. O. Jacob, “Genetics of rheumatoid arthritis: an impressionist perspective,” Rheumatic Disease Clinics of North America, vol. 38, pp. 243–257, 2012. View at Google Scholar
  6. G. W. Bornkamm, “Epstein-Barr virus and its role in the pathogenesis of Burkitt's lymphoma: an unresolved issue,” Seminars in Cancer Biology, vol. 19, no. 6, pp. 351–365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K.-P. Chang, C.-L. Hsu, Y.-L. Chang et al., “Complementary serum test of antibodies to Epstein-Barr virus nuclear antigen-1 and early antigen: a possible alternative for primary screening of nasopharyngeal carcinoma,” Oral Oncology, vol. 44, no. 8, pp. 784–792, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. J. Pons-Estel, G. S. Alarcón, L. Scofield, L. Reinlib, and G. S. Cooper, “Understanding the epidemiology and progression of systemic lupus erythematosus,” Seminars in Arthritis and Rheumatism, vol. 39, no. 4, pp. 257–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Rahman and D. A. Isenberg, “Systemic lupus erythematosus,” New England Journal of Medicine, vol. 358, no. 9, pp. 929–939, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. P. Smith and C. Gordon, “Systemic lupus erythematosus: clinical presentations,” Autoimmunity Reviews, vol. 10, no. 1, pp. 43–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. E. F. Chakravarty, T. M. Bush, S. Manzi, A. E. Clarke, and M. M. Ward, “Prevalence of adult systemic lupus erythematosus in California and Pennsylvania in 2000: estimates obtained using hospitalization data,” Arthritis and Rheumatism, vol. 56, no. 6, pp. 2092–2094, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. G. J. Pons-Estel, G. S. Alarcón, L. Scofield, L. Reinlib, and G. S. Cooper, “Understanding the epidemiology and progression of systemic lupus erythematosus,” Seminars in Arthritis and Rheumatism, vol. 39, no. 4, pp. 257–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. U. S. Gaipl, L. E. Munoz, G. Grossmayer et al., “Clearance deficiency and systemic lupus erythematosus (SLE),” Journal of Autoimmunity, vol. 28, no. 2-3, pp. 114–121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. L. E. Munoz, U. S. Gaipl, S. Franz et al., “SLE—a disease of clearance deficiency?” Rheumatology, vol. 44, no. 9, pp. 1101–1107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. L. E. Muñoz, C. Janko, C. Schulze et al., “Autoimmunity and chronic inflammation—two clearance-related steps in the etiopathogenesis of SLE,” Autoimmunity Reviews, vol. 10, no. 1, pp. 38–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Truedsson, A. A. Bengtsson, and G. Sturfelt, “Complement deficiencies and systemic lupus erythematosus,” Autoimmunity, vol. 40, no. 8, pp. 560–566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. E. Mũoz, K. Lauber, M. Schiller, A. A. Manfredi, and M. Herrmann, “The role of defective clearance of apoptotic cells in systemic autoimmunity,” Nature Reviews Rheumatology, vol. 6, no. 5, pp. 280–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. L. Scott, F. Wolfe, and T. W. J. Huizinga, “Rheumatoid arthritis,” The Lancet, vol. 376, no. 9746, pp. 1094–1108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. I. B. McInnes and G. Schett, “The pathogenesis of rheumatoid arthritis,” The New England Journal of Medicine, vol. 365, no. 23, pp. 2205–2219, 2011. View at Google Scholar · View at Scopus
  20. D. Mewar and A. G. Wilson, “Autoantibodies in rheumatoid arthritis: a review,” Biomedicine and Pharmacotherapy, vol. 60, no. 10, pp. 648–655, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Kavanaugh, R. Tomar, J. Reveille, D. H. Solomon, and H. A. Homburger, “Guidelines for clinical use of the antinuclear antibody test and tests for specific autoantibodies to nuclear antigens,” Archives of Pathology and Laboratory Medicine, vol. 124, no. 1, pp. 71–81, 2000. View at Google Scholar · View at Scopus
  22. H. Furukawa, S. Oka, K. Shimada et al., “Association of increased frequencies of HLA-DPB1*05:01 with the presence of anti-Ro/SS-A and anti-La/SS-B antibodies in Japanese rheumatoid arthritis and systemic lupus erythematosus patients,” PLoS ONE, vol. 8, Article ID e53910, 2013. View at Google Scholar
  23. A. G. Tzioufas, I. P. Tatouli, and H. M. Moutsopoulos, “Autoantibodies in Sjogren's syndrome: clinical presentation and regulatory mechanisms,” La Presse Médicale, vol. 41, pp. e451–e460, 2012. View at Google Scholar
  24. J. G. Routsias and A. G. Tzioufas, “Sjögren's syndrome—study of autoantigens and autoantibodies,” Clinical Reviews in Allergy and Immunology, vol. 32, no. 3, pp. 238–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Witte, K. Hartung, C. Sachse et al., “Rheumatoid factors in systemic lupus erythematosus: association with clinical and laboratory parameters,” Rheumatology International, vol. 19, no. 3, pp. 107–111, 2000. View at Google Scholar · View at Scopus
  26. R. I. Fox, “Sjögren's syndrome,” The Lancet, vol. 366, no. 9482, pp. 321–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Jonsson, P. Vogelsang, R. Volchenkov, A. Espinosa, M. Wahren-Herlenius, and S. Appel, “The complexity of Sjögren's syndrome: novel aspects on pathogenesis,” Immunology Letters, vol. 141, no. 1, pp. 1–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. V. Jonsson, S. Salomonsson, G. Øijordsbakken, and K. Skarstein, “Elevated serum levels of soluble E-cadherin in patients with primary Sjögren's Syndrome,” Scandinavian Journal of Immunology, vol. 62, no. 6, pp. 552–559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. James, B. R. Neas, K. L. Moser et al., “Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure,” Arthritis & Rheumatism, vol. 44, pp. 1122–1126, 2001. View at Google Scholar
  30. P. G. Auwaerter, “Infectious mononucleosis in middle age,” Journal of the American Medical Association, vol. 281, no. 5, pp. 454–459, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Tattevin, Y. Le Tulzo, S. Minjolle et al., “Increasing incidence of severe Epstein-Barr virus-related infectious mononucleosis: surveillance study,” Journal of Clinical Microbiology, vol. 44, no. 5, pp. 1873–1874, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. E. Straus, J. I. Cohen, G. Tosato, and J. Meier, “Epstein-Barr virus infections: biology, pathogenesis, and management,” Annals of Internal Medicine, vol. 118, no. 1, pp. 45–58, 1993. View at Google Scholar · View at Scopus
  33. P. J. Farrell, “Epstein-Barr virus. The B95-8 strain map,” Methods in Molecular Biology, vol. 174, pp. 3–12, 2001. View at Google Scholar · View at Scopus
  34. H. H. Niller, H. Wolf, and J. Minarovits, “Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases,” Autoimmunity, vol. 41, no. 4, pp. 298–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Tsurumi, M. Fujita, and A. Kudoh, “Latent and lytic Epstein-Barr virus replication strategies,” Reviews in Medical Virology, vol. 15, no. 1, pp. 3–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. D. A. Thorley-Lawson, “Epstein-Barr virus: exploiting the immune system,” Nature Reviews Immunology, vol. 1, no. 1, pp. 75–82, 2001. View at Google Scholar · View at Scopus
  37. G. J. Babcock, D. Hochberg, and D. A. Thorley-Lawson, “The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell,” Immunity, vol. 13, no. 4, pp. 497–506, 2000. View at Google Scholar · View at Scopus
  38. B. Adler, E. Schaadt, B. Kempkes, U. Zimber-Strobl, B. Baier, and G. W. Bornkamm, “Control of Epstein-Barr virus reactivation by activated CD40 and viral latent membrane protein 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 437–442, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. http://www.ncbi.nlm.nih.gov/genome/proteins/10261?project_id=14413.
  40. L. L. Laichalk and D. A. Thorley-Lawson, “Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo,” Journal of Virology, vol. 79, no. 2, pp. 1296–1307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. D. A. Thorley-Lawson and A. Gross, “Persistence of the Epstein-Barr virus and the origins of associated lymphomas,” New England Journal of Medicine, vol. 350, no. 13, pp. 1328–1337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. E. D. Fixman, G. S. Hayward, and S. D. Hayward, “trans-Acting requirements for replication of Epstein-Barr virus ori-Lyt,” Journal of Virology, vol. 66, no. 8, pp. 5030–5039, 1992. View at Google Scholar · View at Scopus
  43. K. Fujii, N. Yokoyama, T. Kiyono et al., “The Epstein-Barr virus Pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex,” Journal of Virology, vol. 74, no. 6, pp. 2550–2557, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. W. Hammerschmidt and B. Sugden, “Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus,” Cell, vol. 55, no. 3, pp. 427–433, 1988. View at Google Scholar · View at Scopus
  45. G. Liao, F. Y. Wu, and S. D. Hayward, “Interaction with the Epstein-Barr virus helicase targets Zta to DNA replication compartments,” Journal of Virology, vol. 75, no. 18, pp. 8792–8802, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Schepers, D. Pich, and W. Hammerschmid, “Activation of oriLyt, the lytic origin of DNA replication of Epstein-Barr virus, by BZLF1,” Virology, vol. 220, no. 2, pp. 367–376, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Zeng, J. Middeldorp, J.-J. Madjar, and T. Ooka, “A major DNA binding protein encoded by BALF2 open reading frame of Epstein-Barr Virus (EBV) forms a complex with other EBV DNA-binding proteins: DNAase, EA-D, and DNA polymerase,” Virology, vol. 239, no. 2, pp. 285–295, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Groux, F. Cottrez, C. Montpellier et al., “Isolation and characterization of transformed human T-cell lines infected by Epstein-Barr virus,” Blood, vol. 89, no. 12, pp. 4521–4530, 1997. View at Google Scholar · View at Scopus
  49. Y. Kasahara, A. Yachie, K. Takei et al., “Differential cellular targets of Epstein-Barr virus (EBV) infection between acute EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection,” Blood, vol. 98, no. 6, pp. 1882–1888, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Kimura, Y. Hoshino, H. Kanegane et al., “Clinical and virologic characteristics of chronic active Epstein-Barr virus infection,” Blood, vol. 98, no. 2, pp. 280–286, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Neuhierl, R. Feederle, W. Hammerschmidt, and H. J. Delecluse, “Glycoprotein gp110 of Epstein-Barr virus determines viral tropism and efficiency of infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 23, pp. 15036–15041, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Kanegane, H. Wakiguchi, C. Kanegane, T. Kurashige, and G. Tosato, “Viral interleukin-10 in chronic active Epstein-Barr virus infection,” Journal of Infectious Diseases, vol. 176, no. 1, pp. 254–257, 1997. View at Google Scholar · View at Scopus
  53. S. Henderson, D. Huen, M. Rowe, C. Dawson, G. Johnson, and A. Rickinson, “Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 18, pp. 8479–8483, 1993. View at Google Scholar · View at Scopus
  54. A. J. Gross, D. Hochberg, W. M. Rand, and D. A. Thorley-Lawson, “EBV and systemic lupus erythematosus: a new perspective,” Journal of Immunology, vol. 174, no. 11, pp. 6599–6607, 2005. View at Google Scholar · View at Scopus
  55. I. Kang, T. Quan, H. Nolasco et al., “Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus,” Journal of Immunology, vol. 172, no. 2, pp. 1287–1294, 2004. View at Google Scholar · View at Scopus
  56. J. J.-Y. Lu, D.-Y. Chen, C.-W. Hsieh, J.-L. Lan, F.-J. Lin, and S.-H. Lin, “Association of Epstein-Barr virus infection with systemic lupus erythematosus in Taiwan,” Lupus, vol. 16, no. 3, pp. 168–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. U. Y. Moon, S. J. Park, S. T. Oh et al., “Patients with systemic lupus erythematosus have abnormally elevated Epstein-Barr virus load in blood,” Arthritis Research & Therapy, vol. 6, no. 4, pp. R295–R302, 2004. View at Google Scholar · View at Scopus
  58. S.-F. Yu, H.-C. Wu, W.-C. Tsai et al., “Detecting Epstein-Barr virus DNA from peripheral blood mononuclear cells in adult patients with systemic lupus erythematosus in Taiwan,” Medical Microbiology and Immunology, vol. 194, no. 3, pp. 115–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. B. D. Poole, A. K. Templeton, J. M. Guthridge, E. J. Brown, J. B. Harley, and J. A. James, “Aberrant Epstein-Barr viral infection in systemic lupus erythematosus,” Autoimmunity Reviews, vol. 8, no. 4, pp. 337–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Berkun, G. Zandman-Goddard, O. Barzilai et al., “Infectious antibodies in systemic lupus erythematosus patients,” Lupus, vol. 18, no. 13, pp. 1129–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. D.-Y. Chen, Y.-M. Chen, J.-L. Lan et al., “Polymyositis/dermatomyositis and nasopharyngeal carcinoma: the Epstein-Barr virus connection?” Journal of Clinical Virology, vol. 49, no. 4, pp. 290–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. M. L. Huggins, I. Todd, and R. J. Powell, “Reactivation of Epstein-Barr virus in patients with systemic lupus erythematosus,” Rheumatology International, vol. 25, no. 3, pp. 183–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Stratta, C. Canavese, G. Ciccone et al., “Correlation between cytomegalovirus infection and Raynaud's phenomenon in lupus nephritis,” Nephron, vol. 82, no. 2, pp. 145–154, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. J. A. James, K. M. Kaufman, A. D. Farris, E. Taylor-Albert, T. J. A. Lehman, and J. B. Harley, “An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus,” Journal of Clinical Investigation, vol. 100, no. 12, pp. 3019–3026, 1997. View at Google Scholar · View at Scopus
  65. M. T. McClain, B. D. Poole, B. F. Bruner, K. M. Kaufman, J. B. Harley, and J. A. James, “An altered immune response to Epstein-Barr nuclear antigen 1 in pediatric systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 54, no. 1, pp. 360–368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. B. A. Esen, G. Yilmaz, S. Uzun et al., “Serologic response to Epstein-Barr virus antigens in patients with systemic lupus erythematosus: a controlled study,” Rheumatology International, vol. 32, no. 1, pp. 79–83, 2010. View at Google Scholar
  67. G. Zandman-Goddard, Y. Berkun, O. Barzilai et al., “Exposure to Epstein-Barr virus infection is associated with mild systemic lupus erythematosus disease,” Annals of the New York Academy of Sciences, vol. 1173, pp. 658–663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Draborg, J. Jorgensen, H. Muller et al., “Epstein-Barr virus early antigen diffuse (EBV-EA/D)-directed immunoglobulin A antibodies in systemic lupus erythematosus patients,” Scandinavian Journal of Rheumatology, vol. 41, pp. 280–289, 2012. View at Google Scholar
  69. C.-S. Lan, K.-Y. Yuen, K.-H. Chan, and R.-W. Wong, “Lack of evidence of active lytic replication of Epstein-Barr and cytomegaloviruses in patients with systemic lupus erythematosus,” Chinese Medical Journal, vol. 111, no. 7, pp. 660–665, 1998. View at Google Scholar · View at Scopus
  70. B. R. Berner, M. Tary-Lehmann, N. L. Yonkers, A. D. Askari, P. V. Lehmann, and D. D. Anthony, “Phenotypic and functional analysis of EBV-specific memory CD8 cells in SLE,” Cellular Immunology, vol. 235, no. 1, pp. 29–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Larsen, D. Sauce, C. Deback et al., “Exhausted cytotoxic control of epstein-barr virus in human lupus,” PLoS Pathogens, vol. 7, no. 10, Article ID e1002328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Blaschke, G. Schwarz, D. Moneke, L. Binder, G. Müller, and M. Reuss-Borst, “Epstein-Barr virus infection in peripheral blood mononuclear cells, synovial fluid cells, and synovial membranes of patients with rheumatoid arthritis,” Journal of Rheumatology, vol. 27, no. 4, pp. 866–873, 2000. View at Google Scholar · View at Scopus
  73. M. M. Newkirk, K. N. Watanabe Duffy, J. Leclerc, N. Lambert, and J. B. Shiroky, “Detection of cytomegalovirus, Epstein-Barr virus and herpes virus-6 in patients with rheumatoid arthritis with or without Sjogren's syndrome,” British Journal of Rheumatology, vol. 33, no. 4, pp. 317–322, 1994. View at Google Scholar · View at Scopus
  74. J. G. Saal, M. Krimmel, M. Steidle et al., “Synovial Epstein-Barr virus infection increases the risk of rheumatoid arthritis in individuals with the shared HLA-DR4 epitope,” Arthritis & Rheumatism, vol. 42, pp. 1485–1496, 1999. View at Google Scholar
  75. T. Takeda, Y. Mizugaki, L. Matsubara, S. Imai, T. Koike, and K. Takada, “Lytic Epstein-Barr virus infection in the synovial tissue of patients with rheumatoid arthritis,” Arthritis & Rheumatism, vol. 43, pp. 1218–1225, 2000. View at Google Scholar
  76. M. Takei, K. Mitamura, S. Fujiwara et al., “Detection of Epstein-Barr virus-encoded small RNA 1 and latent membrane protein 1 in synovial lining cells from rheumatoid arthritis patients,” International Immunology, vol. 9, no. 5, pp. 739–743, 1997. View at Publisher · View at Google Scholar · View at Scopus
  77. N. Balandraud, J. B. Meynard, I. Auger et al., “Epstein-Barr virus load in the peripheral blood of patients with rheumatoid arthritis: accurate quantification using real-time polymerase chain reaction,” Arthritis and Rheumatism, vol. 48, no. 5, pp. 1223–1228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Croia, B. Serafini, M. Bombardieri et al., “Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis,” Annals of the Rheumatic Diseases, 2012. View at Publisher · View at Google Scholar
  79. M. A. Alspaugh, G. Henle, E. T. Lennette, and W. Henle, “Elevated levels of antibodies to Epstein-Barr virus antigens in sera and synovial fluids of patients with rheumatoid arthritis,” Journal of Clinical Investigation, vol. 67, no. 4, pp. 1134–1140, 1981. View at Google Scholar · View at Scopus
  80. M. Mousavi-Jazi, L. Boström, C. Lövmark, A. Linde, M. Brytting, and V.-A. Sundqvist, “Infrequent detection of cytomegalovirus and Epstein-Barr virus DNA in synovial membrane of patients with rheumatoid arthritis,” Journal of Rheumatology, vol. 25, no. 4, pp. 623–628, 1998. View at Google Scholar · View at Scopus
  81. M. McDermott, M. Molloy, J. Buckley, and J. Greally, “Antibodies to Epstein-Barr viral antigens in familial rheumatoid arthritis,” Irish Journal of Medical Science, vol. 158, no. 8, pp. 203–205, 1989. View at Google Scholar · View at Scopus
  82. T. Klatt, Q. Ouyang, T. Flad et al., “Expansion of peripheral CD8+ CD28- T cells in response to Epstein-Barr virus in patients with rheumatoid arthritis,” Journal of Rheumatology, vol. 32, no. 2, pp. 239–251, 2005. View at Google Scholar · View at Scopus
  83. E. Toussirot, D. Wendling, P. Tiberghien, J. Luka, and J. Roudier, “Decreased T cell precursor frequencies to Epstein-Barr virus glycoprotein gp110 in peripheral blood correlate with disease activity and severity in patients with rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 59, no. 7, pp. 533–538, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Scotet, J. David-Ameline, M.-A. Peyrat et al., “T cell response to Epstein-Barr virus transactivators in chronic rheumatoid arthritis,” Journal of Experimental Medicine, vol. 184, no. 5, pp. 1791–1800, 1996. View at Google Scholar · View at Scopus
  85. L. C. Tan, A. G. Mowat, C. Fazou et al., “Specificity of T cells in synovial fluid: high frequencies of CD8+ T cells that are specific for certain viral epitopes,” Arthritis Research, vol. 2, no. 2, pp. 154–164, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. R. I. Fox, G. Pearson, and J. H. Vaughan, “Detection of Epstein-Barr virus-associated antigens and DNA in salivary gland biopsies from patients with Sjogren's syndrome,” Journal of Immunology, vol. 137, no. 10, pp. 3162–3168, 1986. View at Google Scholar · View at Scopus
  87. X. Mariette, J. Gozlan, D. Clerc, M. Bisson, and F. Morinet, “Detection of Epstein-Barr virus DNA by in situ hybridization and polymerase chain reaction in salivary gland biopsy specimens from patients with Sjogren's syndrome,” American Journal of Medicine, vol. 90, no. 3, pp. 286–294, 1991. View at Google Scholar · View at Scopus
  88. S. C. Pflugfelder, C. A. Crouse, D. Monroy, M. Yen, M. Rowe, and S. S. Atherton, “Epstein-Barr virus and the lacrimal gland pathology of Sjögren's syndrome,” American Journal of Pathology, vol. 143, no. 1, pp. 49–64, 1993. View at Google Scholar · View at Scopus
  89. I. Saito, B. Servenius, T. Compton, and R. I. Fox, “Detection of Epstein-Barr virus DNA by polymerase chain reaction in blood and tissue biopsies from patients with Sjogren's syndrome,” Journal of Experimental Medicine, vol. 169, no. 6, pp. 2191–2198, 1989. View at Google Scholar · View at Scopus
  90. S. Wen, N. Shimizu, H. Yoshiyama, Y. Mizugaki, F. Shinozaki, and K. Takada, “Association of Epstein-Barr virus (EBV) with Sjogren's syndrome: differential EBV expression between epithelial cells and lymphocytes in salivary glands,” American Journal of Pathology, vol. 149, no. 5, pp. 1511–1517, 1996. View at Google Scholar · View at Scopus
  91. N. Inoue, S. Harada, N. Miyasaka, A. Oya, and K. Yanagi, “Analysis of antibody titers to Epstein-Barr virus nuclear antigens in sera of patients with Sjogren's syndrome and with rheumatoid arthritis,” Journal of Infectious Diseases, vol. 164, no. 1, pp. 22–28, 1991. View at Google Scholar · View at Scopus
  92. N. Miyasaka, K. Yamaoka, M. Tateishi, K. Nishioka, and K. Yamamoto, “Possible involvement of Epstein-Barr virus (EBV) in polyclonal B-cell activation in Sjögren's syndrome,” Journal of Autoimmunity, vol. 2, no. 4, pp. 427–432, 1989. View at Google Scholar · View at Scopus
  93. S. G. Pasoto, R. R. Natalino, H. P. Chakkour et al., “EBV reactivation serological profile in primary Sjogren's syndrome: an underlying trigger of active articular involvement?” Rheumatology International, vol. 33, pp. 1149–1157, 2013. View at Google Scholar
  94. I. Toda, M. Ono, H. Fujishima, and K. Tsubota, “Sjogren's syndrome (SS) and Epstein-Barr virus (EBV) reactivation,” Ocular Immunology and Inflammation, vol. 2, no. 2, pp. 101–109, 1994. View at Google Scholar · View at Scopus
  95. M. Voulgarelis and H. M. Moutsopoulos, “Mucosa-associated lymphoid tissue lymphoma in Sjogren's syndrome: risks, management, and prognosis,” Rheumatic Disease Clinics of North America, vol. 34, no. 4, pp. 921–933, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Nagata, H. Inoue, K. Yamada et al., “Activation of Epstein-Barr virus by saliva from Sjogren's syndrome patients,” Immunology, vol. 111, no. 2, pp. 223–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Garzelli, M. Manunta, M. Incaprera, A. Bazzichi, P. G. Conaldi, and G. Falcone, “Antibodies to histones in infectious mononucleosis,” Immunology Letters, vol. 32, no. 2, pp. 111–116, 1992. View at Publisher · View at Google Scholar · View at Scopus
  98. S. P. Halbert and M. Anken, “Auto-antibodies in infectious mononucleosis, as determined by ELISA,” International Archives of Allergy and Applied Immunology, vol. 69, no. 3, pp. 257–261, 1982. View at Google Scholar · View at Scopus
  99. A. H. Draborg, K. Duus, and G. Houen, “Epstein-Barr virus and systemic lupus erythematosus,” Clinical and Developmental Immunology, vol. 2012, Article ID 370516, 10 pages, 2012. View at Publisher · View at Google Scholar
  100. M. T. Mascia, G. Sandri, C. Guerzoni, R. Roncaglia, G. Mantovani, and C. Ferri, “Detection of autoimmunity in early primary Epstein-Barr virus infection by Western blot analysis,” Clinical and Experimental Rheumatology, vol. 26, no. 6, pp. 1034–1039, 2008. View at Google Scholar · View at Scopus
  101. Y. Kuwana, M. Takei, M. Yajima et al., “Epstein-barr virus induces erosive arthritis in humanized mice,” PLoS ONE, vol. 6, no. 10, Article ID e26630, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. K. W. Wucherpfennig, “Mechanisms for the induction of autoimmunity by infectious agents,” Journal of Clinical Investigation, vol. 108, no. 8, pp. 1097–1104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  103. D. Iwakiri, L. Zhou, M. Samanta et al., “Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3,” Journal of Experimental Medicine, vol. 206, no. 10, pp. 2091–2099, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. B. D. Poole, R. H. Scofield, J. B. Harley, and J. A. James, “Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus,” Autoimmunity, vol. 39, no. 1, pp. 63–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. B. D. Poole, T. Gross, S. Maier, J. B. Harley, and J. A. James, “Lupus-like autoantibody development in rabbits and mice after immunization with EBNA-1 fragments,” Journal of Autoimmunity, vol. 31, no. 4, pp. 362–371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. H. Lee, S. C. Bae, S. J. Choi, J. D. Ji, and G. G. Song, “Associations between interferon regulatory factor 5 polymorphisms and rheumatoid arthritis: a meta-analysis,” Molecular Biology Reports, vol. 40, pp. 1791–1799, 2013. View at Google Scholar
  107. J. A. Ice, H. Li, I. Adrianto et al., “Genetics of Sjögren's syndrome in the genome-wide association era,” Journal of Autoimmunity, vol. 39, pp. 57–63, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. T. Yoshioka, A. Nakajima, H. Akiba et al., “Contribution of OX40/OX40 ligand interaction to the pathogenesis of rheumatoid arthritis,” European Journal of Immunology, vol. 30, pp. 2815–2823, 2000. View at Google Scholar
  109. P. S. Ramos, L. A. Criswell, K. L. Moser et al., “A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap,” PLoS Genetics, vol. 7, no. 12, Article ID e1002406, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Appel, S. Le Hellard, O. Bruland et al., “Potential association of muscarinic receptor 3 gene variants with primary Sjögren's syndrome,” Annals of the Rheumatic Diseases, vol. 70, no. 7, pp. 1327–1329, 2011. View at Publisher · View at Google Scholar · View at Scopus