Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 584303, 9 pages
http://dx.doi.org/10.1155/2013/584303
Research Article

Induction of Th17 Lymphocytes and Treg Cells by Monocyte-Derived Dendritic Cells in Patients with Rheumatoid Arthritis and Systemic Lupus Erythematosus

1Department of Immunology, Facultad de Medicina, UASLP, Avenue V. Carranza 2405, 78210 San Luis Potosí, SLP, Mexico
2Regional Unit of Rheumatology and Osteoporosis, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, SLP, Mexico
3Servicio de Inmunología, Hospital de La Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa, Madrid, Mexico

Received 1 May 2013; Accepted 5 September 2013

Academic Editor: Jianying Zhang

Copyright © 2013 Lizbeth Estrada-Capetillo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. O'Garra and P. Vieira, “Regulatory T cells and mechanisms of immune system control,” Nature Medicine, vol. 10, pp. 801–805, 2004. View at Publisher · View at Google Scholar
  2. C. L. Langrish, Y. Chen, W. M. Blumenschein et al., “IL-23 drives a pathogenic T cell population that induces autoimmune inflammation,” Journal of Experimental Medicine, vol. 201, no. 2, pp. 233–240, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Komiyama, S. Nakae, T. Matsuki et al., “IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 177, no. 1, pp. 566–573, 2006. View at Google Scholar · View at Scopus
  4. C. Sutton, C. Brereton, B. Keogh, K. H. G. Mills, and E. C. Lavelle, “A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis,” Journal of Experimental Medicine, vol. 203, no. 7, pp. 1685–1691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. N. J. Wilson, K. Boniface, J. R. Chan et al., “Development, cytokine profile and function of human interleukin 17-producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp. 950–957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Seiderer, I. Elben, J. Diegelmann et al., “Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD,” Inflammatory Bowel Diseases, vol. 14, no. 4, pp. 437–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Figueroa-Vega, M. Alfonso-Pérez, I. Benedicto, F. Sánchez-Madrid, R. González-Amaro, and M. Marazuela, “Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto's thyroiditis,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 2, pp. 953–962, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Sarkar, L. A. Cooney, and D. A. Fox, “The role of T helper type 17 cells in inflammatory arthritis,” Clinical and Experimental Immunology, vol. 159, no. 3, pp. 225–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Fenoglio, F. Bernuzzi, F. Battaglia et al., “Th17 and regulatory T lymphocytes in primary biliary cirrhosis and systemic sclerosis as models of autoimmune fibrotic diseases,” Autoimmunity Reviews, vol. 12, no. 2, pp. 300–304, 2012. View at Publisher · View at Google Scholar
  10. F. Annunziato, L. Cosmi, F. Liotta, E. Maggi, and S. Romagnani, “The phenotype of human Th17 cells and their precursors, the cytokines that mediate their differentiation and the role of Th17 cells in inflammation,” International Immunology, vol. 20, no. 11, pp. 1361–1368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Kotake, N. Udagawa, N. Takahashi et al., “IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis,” Journal of Clinical Investigation, vol. 103, no. 9, pp. 1345–1352, 1999. View at Google Scholar · View at Scopus
  12. H. Shen, J. C. Goodall, and J. S. Hill Gaston, “Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis,” Arthritis and Rheumatism, vol. 60, no. 6, pp. 1647–1656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. V. Jovanovic, J. A. Di Battista, J. Martel-Pelletier et al., “IL-17 stimulates the production and expression of proinflammatory cytokines, IL-β and TNF-α, by human macrophages,” Journal of Immunology, vol. 160, no. 7, pp. 3513–3521, 1998. View at Google Scholar · View at Scopus
  14. E. Lubberts, M. Koenders, and W. B. van den Berg, “The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models,” Arthritis Research and Therapy, vol. 7, no. 1, pp. 29–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. L. van Bezooijen, L. van der Wee-Pals, S. E. Papapoulos, and C. W. G. M. Löwik, “Interleukin 17 synergises with tumour necrosis factor α to induce cartilage destruction in vitro,” Annals of the Rheumatic Diseases, vol. 61, no. 10, pp. 870–876, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. McGeachy, Y. Chen, C. M. Tato et al., “The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo,” Nature Immunology, vol. 10, no. 3, pp. 314–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. N. J. Wilson, K. Boniface, J. R. Chan et al., “Development, cytokine profile and function of human interleukin 17-producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp. 950–957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Yen, J. Cheung, H. Scheerens et al., “IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1310–1316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Volpe, N. Servant, R. Zollinger et al., “A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses,” Nature Immunology, vol. 9, no. 6, pp. 650–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Ghoreschi, A. Laurence, X. Yang et al., “Generation of pathogenic TH 17 cells in the absence of TGF-β 2 signalling,” Nature, vol. 467, no. 7318, pp. 967–971, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Kadowaki, “Dendritic cells—a conductor of T cell differentiation,” Allergology International, vol. 56, no. 3, pp. 193–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Iwasaki and R. Medzhitov, “Regulation of adaptive immunity by the innate immune system,” Science, vol. 327, no. 5963, pp. 291–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. LeibundGut-Landmann, O. Groß, M. J. Robinson et al., “Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17,” Nature Immunology, vol. 8, no. 6, pp. 630–638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. van Beelen, Z. Zelinkova, E. W. Taanman-Kueter et al., “Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells,” Immunity, vol. 27, no. 4, pp. 660–669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, “TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells,” Immunity, vol. 24, no. 2, pp. 179–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. R. M. Steinman, S. Turley, I. Mellman, and K. Inaba, “The induction of tolerance by dendritic cells that have captured apoptotic cells,” Journal of Experimental Medicine, vol. 191, no. 3, pp. 411–416, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Jonuleit, E. Schmitt, K. Steinbrink, and A. H. Enk, “Dendritic cells as a tool to induce anergic and regulatory T cells,” Trends in Immunology, vol. 22, no. 7, pp. 394–400, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Kuipers, F. Muskens, M. Willart et al., “Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ cell activation,” European Journal of Immunology, vol. 36, no. 9, pp. 2472–2482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Urzainqui, G. M. Del Hoyo, A. Lamana et al., “Functional role of P-selectin glycoprotein ligand 1/P-selectin interaction in the generation of tolerogenic dendritic cells,” Journal of Immunology, vol. 179, no. 11, pp. 7457–7465, 2007. View at Google Scholar · View at Scopus
  31. M. Feldmann, F. M. Brennan, and R. N. Maini, “Rheumatoid arthritis,” Cell, vol. 85, no. 3, pp. 307–310, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Nakae, A. Nambu, K. Sudo, and Y. Iwakura, “Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice,” Journal of Immunology, vol. 171, no. 11, pp. 6173–6177, 2003. View at Google Scholar · View at Scopus
  33. E. Lubberts, M. I. Koenders, B. Oppers-Walgreen et al., “Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion,” Arthritis and Rheumatism, vol. 50, no. 2, pp. 650–659, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Chabaud, J. M. Durand, N. Buchs et al., “Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium,” Arthritis and Rheumatism, vol. 42, no. 5, pp. 963–970, 1999. View at Publisher · View at Google Scholar
  35. W. Dong and P. Zhu, “Functional niche of inflamed synovium for Th17-cell expansion and activation in rheumatoid arthritis: implication to clinical therapeutics,” Autoimmunity Reviews, vol. 11, no. 12, pp. 844–851, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Vaknin-Dembinsky, K. Balashov, and H. L. Weiner, “IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production,” Journal of Immunology, vol. 176, no. 12, pp. 7768–7774, 2006. View at Google Scholar · View at Scopus
  37. G. S. Dean, J. Tyrrell-Price, E. Crawley, and D. A. Isenberg, “Cytokines and systemic lupus erythematosus,” Annals of the Rheumatic Diseases, vol. 59, no. 4, pp. 243–251, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Ambrosi, A. Espinosa, and M. Wahren-Herlenius, “IL-17: a new actor in IFN-driven systemic autoimmune diseases,” European Journal of Immunology, vol. 42, no. 9, pp. 2274–3384, 2012. View at Publisher · View at Google Scholar
  39. P. Pisitkun, H. L. Ha, H. Wang et al., “Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis,” Immunity, vol. 37, no. 6, pp. 1104–1115, 2012. View at Publisher · View at Google Scholar
  40. F. C. Arnett, S. M. Edworthy, D. A. Bloch et al., “The American rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 31, no. 3, pp. 315–324, 1988. View at Google Scholar · View at Scopus
  41. E. M. Tan, A. S. Cohen, J. F. Fries et al., “The 1982 revised criteria for the classification of systemic lupus erythrematosus,” Arthritis and Rheumatism, vol. 25, no. 11, pp. 1271–1277, 1982. View at Google Scholar · View at Scopus
  42. A. G. Uribe, L. M. Vilá, G. McGwin Jr., M. L. Sanchez, J. D. Reveille, and G. S. Alarcón, “The systemic lupus activity measure-revised, the Mexican systemic lupus erythematosus disease activity index (SLEDAI), and a modified SLEDAI-2K are adequate instruments to measure disease activity in systemic lupus erythematosus,” Journal of Rheumatology, vol. 31, no. 10, pp. 1934–1940, 2004. View at Google Scholar · View at Scopus
  43. I. Arroyo-Villa, M. B. Bautista-Caro, A. Salsa et al., “Frequency of Th17 CD4+T cells in early rheumatoid arthritis: a marker of anti-CCP seropositivity,” PLoS One, vol. 7, no. 8, Article ID e42189, 2012. View at Publisher · View at Google Scholar
  44. N. E. Aerts, K. J. de knop, J. Leysen et al., “Increased IL-17 production by peripheral T helper cells after tumour necrosis factor blockade in rheumatoid arthritis is accompanied by inhibition of migrationassociated chemokine receptor expression,” Rheumatology, vol. 49, no. 12, Article ID keq224, pp. 2264–2272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Shah, W. W. Lee, S. H. Lee et al., “Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 12, no. 2, article R53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Santiago-Schwarz, P. Anand, S. Liu, and S. E. Carsons, “Dendritic cells (DCs) in rheumatoid arthritis (RA): progenitor cells and soluble factors contained in RA synovial fluid yield a subset of myeloid DCs that preferentially activate Th1 inflammatory-type responses,” Journal of Immunology, vol. 167, no. 3, pp. 1758–1768, 2001. View at Google Scholar · View at Scopus
  47. N. Figueroa-Vega, G. Galindo-Rodríguez, S. Bajaña et al., “Phenotypic analysis of IL-10-treated, monocyte-derived dendritic cells in patients with systemic lupus erythematosus,” Scandinavian Journal of Immunology, vol. 64, no. 6, pp. 668–676, 2006. View at Publisher · View at Google Scholar
  48. M. C. Lebre, S. L. Jongbloed, S. W. Tas, T. J. M. Smeets, I. B. McInnes, and P. P. Tak, “Rheumatoid arthritis synovium contains two subsets of CD83-DC-LAMP- dendritic cells with distinct cytokine profiles,” The American Journal of Pathology, vol. 172, no. 4, pp. 940–950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Alvarado-Sánchez, B. Hernández-Castro, D. Portales-Pérez et al., “Regulatory T cells in patients with systemic lupus erythematosus,” Journal of Autoimmunity, vol. 27, no. 2, pp. 110–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Y. Lee, Y. K. Hong, H. J. Yun, Y. M. Kim, J. R. Kim, and W. H. Yoo, “Altered frequency and migration capacity of CD4+ CD25+ regulatory T cells in systemic lupus erythematosus,” Rheumatology, vol. 47, no. 6, pp. 789–794, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. J. A. G. van Roon, S. A. Y. Hartgring, K. M. G. van der Wurff-Jacobs, J. W. J. Bijlsma, and F. P. J. G. Lafeber, “Numbers of CD25+Foxp3+ T cells that lack the IL-7 receptor are increased intra-articularly and have impaired suppressive function in RA patients,” Rheumatology, vol. 49, no. 11, Article ID keq237, pp. 2084–2089, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. J. J. Cush, J. B. Splawski, R. Thomas et al., “Elevated interleukin-10 levels in patients with rheumatoid arthritis,” Arthritis and Rheumatism, vol. 38, no. 1, pp. 96–104, 1995. View at Publisher · View at Google Scholar · View at Scopus