Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 586076, 10 pages
http://dx.doi.org/10.1155/2013/586076
Review Article

Neonatal Sepsis due to Coagulase-Negative Staphylococci

1Child and Family Research Institute, 4th Floor, Translational Research Building, 950 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4
2Department of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1ZA
3Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada V6T 1ZA
4Department of Pediatrics, Children’s Hospital, University of Oxford, Oxford OX3 9DU, UK

Received 12 March 2013; Revised 27 April 2013; Accepted 27 April 2013

Academic Editor: Robert Bortolussi

Copyright © 2013 Elizabeth A. Marchant et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Qazi and B. J. Stoll, “Neonatal sepsis: a major global public health challenge,” The Pediatric Infectious Disease Journal, vol. 28, supplement 1, pp. S1–S2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Bizzarro, C. Raskind, R. S. Baltimore, and P. G. Gallagher, “Seventy-five years of neonatal sepsis at Yale: 1928–2003,” Pediatrics, vol. 116, no. 3, pp. 595–602, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. G. Donowitz, “Nosocomial infection in neonatal intensive care units,” American Journal of Infection Control, vol. 17, no. 5, pp. 250–257, 1989. View at Google Scholar · View at Scopus
  4. B. J. Stoll, N. I. Hansen, E. F. Bell et al., “Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network,” Pediatrics, vol. 126, no. 3, pp. 443–456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. B. J. Stoll, N. Hansen, A. A. Fanaroff et al., “Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants,” The New England Journal of Medicine, vol. 347, no. 4, pp. 240–247, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Vergnano, E. Menson, N. Kennea et al., “Neonatal infections in England: the neonIN surveillance network,” Archives of Disease in Childhood: Fetal and Neonatal Edition, vol. 96, no. 1, pp. F9–F14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. B. J. Stoll, N. Hansen, A. A. Fanaroff et al., “Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network,” Pediatrics, vol. 110, no. 2, part 1, pp. 285–291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. P. L. Graham, M. D. Begg, E. Larson, P. Della-Latta, A. Allen, and L. Saiman, “Risk factors for late onset gram-negative sepsis in low birth weight infants hospitalized in the neonatal intensive care unit,” The Pediatric Infectious Disease Journal, vol. 25, no. 2, pp. 113–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. P. Hornik, P. Fort, R. H. Clark et al., “Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units,” Early Human Development, vol. 88, supplement 2, pp. S69–S74, 2012. View at Publisher · View at Google Scholar
  10. I. R. Makhoul, P. Sujov, T. Smolkin, A. Lusky, and B. Reichman, “Pathogen-specific early mortality in very low birth weight infants with late-onset sepsis: a national survey,” Clinical Infectious Diseases, vol. 40, no. 2, pp. 218–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. E. J. Weston, T. Pondo, M. M. Lewis et al., “The burden of invasive early-onset neonatal sepsis in the United States, 2005–2008,” The Pediatric Infectious Disease Journal, vol. 30, no. 11, pp. 937–941, 2011. View at Google Scholar
  12. T. M. O'Shea, “Cerebral palsy in very preterm infants: new epidemiological insights,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 8, no. 3, pp. 135–145, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Gray, D. K. Richardson, M. C. McCormick, and D. A. Goldmann, “Coagulase-negative staphylococcal bacteremia among very low birth weight infants: relation to admission illness severity, resource use, and outcome,” Pediatrics, vol. 95, no. 2, pp. 225–230, 1995. View at Google Scholar · View at Scopus
  14. N. R. Payne, J. H. Carpenter, G. J. Badger, J. D. Horbar, and J. Rogowski, “Marginal increase in cost and excess length of stay associated with nosocomial bloodstream infections in surviving very low birth weight infants,” Pediatrics, vol. 114, no. 2, pp. 348–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Adams-Chapman and B. J. Stoll, “Prevention of nosocomial infections in the neonatal intensive care unit,” Current Opinion in Pediatrics, vol. 14, no. 2, pp. 157–164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. UNICEF, The State of the World’s Health 2009: Maternal and Newborn Health, 2009.
  17. WHO, World Heath Statistics: 2010, 2010.
  18. L. Liu, H. L. Johnson, S. Cousens et al., “Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000,” The Lancet, vol. 379, no. 9832, pp. 2151–2161, 2012. View at Google Scholar
  19. M. T. Brady, “Health care-associated infections in the neonatal intensive care unit,” American Journal of Infection Control, vol. 33, no. 5, pp. 268–275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. Goldmann, “Bacterial colonization and infection in the neonate,” The American Journal of Medicine, vol. 70, no. 2, pp. 417–422, 1981. View at Google Scholar
  21. R. D. Feigin, J. Cherry, G. Demmler, and S. Kaplan, Textbook of Pediatric Infectious Diseases. Volume 1, Saunders (Elsevier), Philadelphia, Pa, USA, 2004.
  22. S. L. Hall, S. W. Riddell, W. G. Barnes, L. Meng, and R. T. Hall, “Evaluation of coagulase-negative staphylococcal isolates from serial nasopharyngeal cultures of premature infants,” Diagnostic Microbiology and Infectious Disease, vol. 13, no. 1, pp. 17–23, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. A. H. Sohn, D. O. Garrett, R. L. Sinkowitz-Cochran et al., “Prevalence of nosocomial infections in neonatal intensive care unit patients: results from the first national point-prevalence survey,” Journal of Pediatrics, vol. 139, no. 6, pp. 821–827, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Bolat, S. Uslu, G. Bolat et al., “Healthcare-associated infections in a Neonatal Intensive Care Unit in Turkey,” Indian Pediatrics, vol. 49, no. 12, pp. 951–957, 2012. View at Google Scholar
  25. J. Freeman, D. A. Goldmann, N. E. Smith, D. G. Sidebottom, M. F. Epstein, and R. Platt, “Association of intravenous lipid emulsion and coagulase-negative staphylococcal bacteremia in neonatal intensive care units,” The New England Journal of Medicine, vol. 323, no. 5, pp. 301–308, 1990. View at Google Scholar · View at Scopus
  26. A. C. V. Távora, A. B. Castro, M. A. M. Militão, J. E. Girão, K. D. C. Ribeiro, and L. G. F. Távora, “Risk factors for nosocomial infection in a Brazilian neonatal intensive care unit,” The Brazilian Journal of Infectious Diseases, vol. 12, no. 1, pp. 75–79, 2008. View at Google Scholar
  27. D. Isaacs, C. Barfield, T. Clothier et al., “Late-onset infections of infants in neonatal units,” Journal of Paediatrics and Child Health, vol. 32, no. 2, pp. 158–161, 1996. View at Google Scholar · View at Scopus
  28. C. M. Healy, C. J. Baker, D. L. Palazzi, J. R. Campbell, and M. S. Edwards, “Distinguishing true coagulase-negative Staphylococcus infections from contaminants in the neonatal intensive care unit,” Journal of Perinatology, vol. 33, no. 1, pp. 52–58, 2013. View at Google Scholar
  29. C. H. Patrick, J. F. John, A. H. Levkoff, and L. M. Atkins, “Relatedness of strains of methicillin-resistant coagulase-negative Staphylococcus colonizing hospital personnel and producing bacteremias in a neonatal intensive care unit,” The Pediatric Infectious Disease Journal, vol. 11, no. 11, pp. 935–940, 1992. View at Google Scholar · View at Scopus
  30. J. Huebner and D. A. Goldmann, “Coagulase-negative staphylococci: role as pathogens,” Annual Review of Medicine, vol. 50, pp. 223–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. J. S. Remington, J. O. Klein, C. B. Wilson, V. Nizet, and Y. A. Maldonado, “Staphylococcal infections,” in Infectious Diseases of the Fetus and Newborn, pp. 489–505, Saunders (Elsevier), Philadelphia, Pa, USA, 2011. View at Google Scholar
  32. J. Huebner, G. B. Pier, J. N. Maslow et al., “Endemic nosocomial transmission of Staphylococcus epidermidis bacteremia isolates in a neonatal intensive care unit over 10 years,” Journal of Infectious Diseases, vol. 169, no. 3, pp. 526–531, 1994. View at Google Scholar · View at Scopus
  33. O. Lyytikäinen, H. Saxén, R. Ryhänen, M. Vaara, and J. Vuopio-Varkila, “Persistence of a multiresistant clone of Staphylococcus epidermidis in a neonatal intensive-care unit for a four-year period,” Clinical Infectious Diseases, vol. 20, no. 1, pp. 24–29, 1995. View at Google Scholar · View at Scopus
  34. M. Björkqvist, M. Liljedahl, J. Zimmermann, J. Schollin, and B. Söderquist, “Colonization pattern of coagulase-negative staphylococci in preterm neonates and the relation to bacteremia,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 29, no. 9, pp. 1085–1093, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Milisavljevic, F. Wu, J. Cimmotti et al., “Genetic relatedness of Staphylococcus epidermidis from infected infants and staff in the neonatal intensive care unit,” American Journal of Infection Control, vol. 33, no. 6, pp. 341–347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. F. Costa, M. H. Miceli, and E. J. Anaissie, “Mucosa or skin as source of coagulase-negative staphylococcal bacteraemia?” Lancet Infectious Diseases, vol. 4, no. 5, pp. 278–286, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Hira, R. F. Kornelisse, M. Sluijter et al., “Colonization dynamics of antibiotic-resistant coagulase-negative Staphylococci in neonates,” Journal of Clinical Microbiology, vol. 51, no. 2, pp. 595–597, 2013. View at Google Scholar
  38. T. Strunk, P. Richmond, K. Simmer, A. Currie, O. Levy, and D. Burgner, “Neonatal immune responses to coagulase-negative staphylococci,” Current Opinion in Infectious Diseases, vol. 20, no. 4, pp. 370–375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. A. Sharma, R. Jen, A. Butler, and P. M. Lavoie, “The developing human preterm neonatal immune system: a case for more research in this area,” Clinical Immunology, vol. 145, no. 1, pp. 61–68, 2012. View at Google Scholar
  40. B. Adkins, C. Leclerc, and S. Marshall-Clarke, “Neonatal adaptive immunity comes of age,” Nature Reviews. Immunology, vol. 4, no. 7, pp. 553–564, 2004. View at Google Scholar · View at Scopus
  41. H. Zaghouani, C. M. Hoeman, and B. Adkins, “Neonatal immunity: faulty T-helpers and the shortcomings of dendritic cells,” Trends in Immunology, vol. 30, no. 12, pp. 585–591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. O. Levy, “Innate immunity of the newborn: basic mechanisms and clinical correlates,” Nature Reviews. Immunology, vol. 7, no. 5, pp. 379–390, 2007. View at Google Scholar
  43. J. L. Wynn and O. Levy, “Role of innate host defenses in susceptibility to early-onset neonatal sepsis,” Clinics in Perinatology, vol. 37, no. 2, pp. 307–337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. O. Levy, “Innate immunity of the human newborn: distinct cytokine responses to LPS and other toll-like receptor agonists,” Journal of Endotoxin Research, vol. 11, no. 2, pp. 113–116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Jackson, “Time to review newborn skincare,” Infant, vol. 4, no. 5, pp. 168–171, 2008. View at Google Scholar
  46. V. A. Harpin and N. Rutter, “Barrier properties of the newborn infant’s skin,” The Journal of Pediatrics, vol. 102, no. 3, pp. 419–425, 1983. View at Google Scholar
  47. N. J. Evans and N. Rutter, “Development of the epidermis in the newborn,” Biology of the Neonate, vol. 49, no. 2, pp. 74–80, 1986. View at Google Scholar · View at Scopus
  48. V. P. Walker, H. T. Akinbi, J. Meinzen-Derr, V. Narendran, M. Visscher, and S. B. Hoath, “Host defense proteins on the surface of neonatal skin: implications for innate immunity,” Journal of Pediatrics, vol. 152, no. 6, pp. 777–781, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. O. Visscher, V. Narendran, W. L. Pickens et al., “Vernix caseosa in neonatal adaptation,” Journal of Perinatology, vol. 25, no. 7, pp. 440–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. C. C. Yost, M. J. Cody, E. S. Harris et al., “Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates,” Blood, vol. 113, no. 25, pp. 6419–6427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. A. A. Larson and J. G. H. Dinulos, “Cutaneous bacterial infections in the newborn,” Current Opinion in Pediatrics, vol. 17, no. 4, pp. 481–485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. S. J. McElroy and J. H. Weitkamp, “Innate immunity in the small intestine of the preterm infant,” NeoReviews, vol. 12, no. 9, pp. e517–e526, 2011. View at Google Scholar
  53. C. N. Emami, M. Petrosyan, S. Giuliani et al., “Role of the host defense system and intestinal microbial flora in the pathogenesis of necrotizing enterocolitis,” Surgical Infections, vol. 10, no. 5, pp. 407–417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Yoshio, M. Tollin, G. H. Gudmundsson et al., “Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense,” Pediatric Research, vol. 53, no. 2, pp. 211–216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. E. B. Mallow, A. Harris, N. Salzman et al., “Human enteric defensins: gene structure and developmental expression,” Journal of Biological Chemistry, vol. 271, no. 8, pp. 4038–4045, 1996. View at Google Scholar · View at Scopus
  56. M. P. Sherman, S. H. Bennett, F. F. Y. Hwang, J. Sherman, and C. L. Bevins, “Paneth cells and antibacterial host defense in neonatal small intestine,” Infection and Immunity, vol. 73, no. 9, pp. 6143–6146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. H. J. L. Brooks, M. A. Mcconnell, and R. S. Broadbent, “Microbes and the inflammatory response in necrotising enterocolitis,” in Preterm Birth, O. Erez, Ed., pp. 137–174, InTech, 2013. View at Google Scholar
  58. E. C. Claud and W. A. Walker, “Hypothesis: inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis,” FASEB Journal, vol. 15, no. 8, pp. 1398–1403, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. W. Hsueh, M. S. Caplan, X. W. Qu, X. D. Tan, I. G. de Plaen, and F. Gonzalez-Crussi, “Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts,” Pediatric and Developmental Pathology, vol. 6, no. 1, pp. 6–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. D. L. Mollitt, J. J. Tepas, and J. L. Talbert, “The role of coagulase-negative Staphylococcus in neonatal necrotizing enterocolitis,” Journal of Pediatric Surgery, vol. 23, no. 1, part 2, pp. 60–63, 1988. View at Google Scholar · View at Scopus
  61. D. W. Scheifele, G. L. Bjornson, R. Dyer, and J. E. Dimmick, “Delta-like toxin produced by coagulase-negative staphylococci is associated with neonatal necrotizing enterocolitis,” Infection and Immunity, vol. 55, no. 9, pp. 2268–2273, 1987. View at Google Scholar · View at Scopus
  62. D. W. Scheifele and G. L. Bjornson, “Delta toxin activity in coagulase-negative Staphylococci from the bowels of neonates,” Journal of Clinical Microbiology, vol. 26, no. 2, pp. 279–282, 1988. View at Google Scholar · View at Scopus
  63. K. L. Schnabl, J. E. van Aerde, A. B. R. Thomson, and M. T. Clandinin, “Necrotizing enterocolitis: a multifactorial disease with no cure,” World Journal of Gastroenterology, vol. 14, no. 14, pp. 2142–2161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. E. J. Israel, “Neonatal necrotizing enterocolitis, a disease of the immature intestinal mucosal barrier,” Acta Paediatrica. Supplement, vol. 396, pp. 27–32, 1994. View at Google Scholar · View at Scopus
  65. S. F. Wu, M. Caplan, and H. C. Lin, “Necrotizing enterocolitis: old problem with new hope,” Pediatrics and Neonatology, vol. 53, no. 3, pp. 158–163, 2012. View at Google Scholar
  66. J. M. Voyich, K. R. Braughton, D. E. Sturdevant et al., “Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils,” Journal of Immunology, vol. 175, no. 6, pp. 3907–3919, 2005. View at Google Scholar · View at Scopus
  67. J. S. Cho, E. M. Pietras, N. C. Garcia et al., “IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice,” Journal of Clinical Investigation, vol. 120, no. 5, pp. 1762–1773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. L. S. Miller, E. M. Pietras, L. H. Uricchio et al., “Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo,” Journal of Immunology, vol. 179, no. 10, pp. 6933–6942, 2007. View at Google Scholar · View at Scopus
  69. J. M. Koenig and M. C. Yoder, “Neonatal neutrophils: the good, the bad, and the ugly,” Clinics in Perinatology, vol. 31, no. 1, pp. 39–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Björkqvist, M. Jurstrand, L. Bodin, H. Fredlund, and J. Schollin, “Defective neutrophil oxidative burst in preterm newborns on exposure to coagulase-negative staphylococci,” Pediatric Research, vol. 55, no. 6, pp. 966–971, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. G. E. Schutze, M. A. Hall, C. J. Baker, and M. S. Edwards, “Role of neutrophil receptors in opsonophagocytosis of coagulase-negative staphylococci,” Infection and Immunity, vol. 59, no. 8, pp. 2573–2578, 1991. View at Google Scholar · View at Scopus
  72. O. Takeuchi and S. Akira, “Pattern recognition receptors and inflammation,” Cell, vol. 140, no. 6, pp. 805–820, 2010. View at Google Scholar
  73. K. Takeda and S. Akira, “TLR signaling pathways,” Seminars in Immunology, vol. 16, no. 1, pp. 3–9, 2004. View at Google Scholar
  74. T. Kawai and S. Akira, “The role of pattern-recognition receptors in innate immunity: update on toll-like receptors,” Nature Immunology, vol. 11, no. 5, pp. 373–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Kawai and S. Akira, “Toll-like receptors and their crosstalk with other innate receptors in infection and immunity,” Immunity, vol. 34, no. 5, pp. 637–650, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Strunk, P. Richmond, A. Prosser et al., “Method of bacterial killing differentially affects the human innate immune response to Staphylococcus epidermidis,” Innate Immunity, vol. 17, no. 6, pp. 508–516, 2011. View at Google Scholar
  77. K. D. Kronforst, C. J. Mancuso, M. Pettengill et al., “A neonatal model of intravenous Staphylococcus epidermidis infection in mice <24 h old enables characterization of early innate immune responses,” PloS One, vol. 7, no. 9, Article ID e43897, 2012. View at Google Scholar
  78. A. M. Hajjar, D. S. O'Mahony, A. Ozinsky et al., “Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin,” Journal of Immunology, vol. 166, no. 1, pp. 15–19, 2001. View at Google Scholar · View at Scopus
  79. W. C. Liles, A. R. Thomsen, D. S. O'Mahony, and S. J. Klebanoff, “Stimulation of human neutrophils and monocytes by staphylococcal phenol-soluble modulin,” Journal of Leukocyte Biology, vol. 70, no. 1, pp. 96–102, 2001. View at Google Scholar · View at Scopus
  80. C. Mehlin, C. M. Headley, and S. J. Klebanoff, “An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization,” Journal of Experimental Medicine, vol. 189, no. 6, pp. 907–917, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. L. S. Miller and J. S. Cho, “Immunity against Staphylococcus aureus cutaneous infections,” Nature Reviews Immunology, vol. 11, no. 8, pp. 505–518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Lai, A. L. Cogen, K. A. Radek et al., “Activation of TLR2 by a small molecule produced by staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections,” Journal of Investigative Dermatology, vol. 130, no. 9, pp. 2211–2221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Strunk, A. Currie, P. Richmond, K. Simmer, and D. Burgner, “Innate immunity in human newborn infants: prematurity means more than immaturity,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 24, no. 1, pp. 25–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. P. M. Lavoie, Q. Huang, E. Jolette et al., “Profound lack of interleukin (IL)-12/IL-23p40 in neonates born early in gestation is associated with an increased risk of sepsis,” The Journal of Infectious Diseases, vol. 202, no. 11, pp. 1754–1763, 2010. View at Google Scholar
  85. T. Strunk, A. Prosser, O. Levy et al., “Responsiveness of human monocytes to the commensal bacterium Staphylococcus epidermidis develops late in gestation,” Pediatric Research, vol. 72, no. 1, pp. 10–18, 2012. View at Google Scholar
  86. G. Y. C. Cheung, K. Rigby, R. Wang et al., “Staphylococcus epidermidis strategies to avoid killing by human neutrophils,” PLoS Pathogens, vol. 6, no. 10, Article ID e1001133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. T. J. Foster, “Immune evasion by staphylococci,” Nature Reviews. Microbiology, vol. 3, no. 12, pp. 948–958, 2005. View at Google Scholar
  88. C. von Eiff, G. Peters, and C. Heilmann, “Pathogenesis of infections due to coagulase-negative staphylococci,” Lancet Infectious Diseases, vol. 2, no. 11, pp. 677–685, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Mack, A. P. Davies, L. G. Harris, H. Rohde, M. A. Horstkotte, and J. K. M. Knobloch, “Microbial interactions in Staphylococcus epidermidis biofilms,” Analytical and Bioanalytical Chemistry, vol. 387, no. 2, pp. 399–408, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Rohde, S. Frankenberger, U. Zähringer, and D. Mack, “Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections,” European Journal of Cell Biology, vol. 89, no. 1, pp. 103–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Kocianova, C. Vuong, Y. Yao et al., “Key role of poly-γ-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis,” Journal of Clinical Investigation, vol. 115, no. 3, pp. 688–694, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. C. Vuong, J. M. Voyich, E. R. Fischer et al., “Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system,” Cellular Microbiology, vol. 6, no. 3, pp. 269–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Guenther, P. Stroh, C. Wagner, U. Obst, and G. M. Hänch, “Phagocytosis of staphylococci biofilms by polymorphonuclear neutrophils: S. aureus and S. epidermidis differ with regard to their susceptibility towards the host defense,” International Journal of Artificial Organs, vol. 32, no. 9, pp. 565–573, 2009. View at Google Scholar · View at Scopus
  94. C. Klingenberg, E. Aarag, A. Rønnestad et al., “Coagulase-negative staphylococcal sepsis in neonates: association between antibiotic resistance, biofilm formation and the host inflammatory response,” The Pediatric Infectious Disease Journal, vol. 24, no. 9, pp. 817–822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Qu, A. J. Daley, T. S. Istivan, S. M. Garland, and M. A. Deighton, “Antibiotic susceptibility of coagulase-negative staphylococci isolated from very low birth weight babies: comprehensive comparisons of bacteria at different stages of biofilm formation,” Annals of Clinical Microbiology and Antimicrobials, vol. 9, article 16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Otto, “Staphylococcus colonization of the skin and antimicrobial peptides,” Expert Review of Dermatology, vol. 5, no. 2, pp. 183–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. F. Oppermann-Sanio and A. Steinbüchel, “Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production,” Naturwissenschaften, vol. 89, no. 1, pp. 11–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. W. Ziebuhr, S. Hennig, M. Eckart, H. Kränzler, C. Batzilla, and S. Kozitskaya, “Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen,” International Journal of Antimicrobial Agents, vol. 28, supplement 1, pp. S14–S20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. K. L. Rogers, P. D. Fey, and M. E. Rupp, “Coagulase-negative Staphylococcal infections,” Infectious Disease Clinics of North America, vol. 23, no. 1, pp. 73–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. B. Neumeister, S. Kastner, S. Conrad, G. Klotz, and P. Bartmann, “Characterization of coagulase-negative staphylococci causing nosocomial infections in preterm infants,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 14, no. 10, pp. 856–863, 1995. View at Google Scholar
  101. M. Khashu, H. Osiovich, D. Henry, A. Al Khotani, A. Solimano, and D. P. Speert, “Persistent bacteremia and severe thrombocytopenia caused by coagulase-negative Staphylococcus in a neonatal intensive care unit,” Pediatrics, vol. 117, no. 2, pp. 340–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Paolucci, M. P. Landini, and V. Sambri, “How can the microbiologist help in diagnosing neonatal sepsis?” International Journal of Pediatrics, vol. 2012, Article ID 120139, 14 pages, 2012. View at Publisher · View at Google Scholar
  103. R. L. Schelonka, M. K. Chai, B. A. Yoder, D. Hensley, R. M. Brockett, and D. P. Ascher, “Volume of blood required to detect common neonatal pathogens,” Journal of Pediatrics, vol. 129, no. 2, pp. 275–278, 1996. View at Publisher · View at Google Scholar · View at Scopus
  104. T. G. Connell, M. Rele, D. Cowley, J. P. Buttery, and N. Curtis, “How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children's hospital,” Pediatrics, vol. 119, no. 5, pp. 891–896, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Craft and N. Finer, “Nosocomial coagulase negative staphylococcal (CoNS) catheter-related sepsis in preterm infants: definition, diagnosis, prophylaxis, and prevention,” Journal of Perinatology, vol. 21, no. 3, pp. 186–192, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. T. B. Newman, K. M. Puopolo, S. Wi, D. Draper, and G. J. Escobar, “Interpreting complete blood counts soon after birth in newborns at risk for sepsis,” Pediatrics, vol. 126, no. 5, pp. 903–909, 2010. View at Google Scholar
  107. J. D. M. Edgar, V. Gabriel, J. R. Gallimore, S. A. McMillan, and J. Grant, “A prospective study of the sensitivity, specificity and diagnostic performance of soluble intercellular adhesion molecule 1, highly sensitive C-reactive protein, soluble E-selectin and serum amyloid A in the diagnosis of neonatal infection,” BMC Pediatrics, vol. 10, article 22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. E. K. Vouloumanou, E. Plessa, D. E. Karageorgopoulos, E. Mantadakis, and M. E. Falagas, “Serum procalcitonin as a diagnostic marker for neonatal sepsis: a systematic review and meta-analysis,” Intensive Care Medicine, vol. 37, no. 5, pp. 747–762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. K. K. Hall and J. Lyman, “Updated review of blood culture contamination,” Clinical Microbiology Reviews, vol. 19, no. 4, pp. 788–802, 2006. View at Google Scholar
  110. S. E. Beekmann, D. J. Diekema, and G. V. Doern, “Determining the clinical significance of coagulase-negative staphylococci isolated from blood cultures,” Infection Control and Hospital Epidemiology, vol. 26, no. 6, pp. 559–566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. F. Blot, G. E. Nitenberg, E. Chachaty et al., “Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures,” The Lancet, vol. 354, no. 9184, pp. 1071–1077, 1999. View at Publisher · View at Google Scholar · View at Scopus
  112. F. M. Parvez and W. R. Jarvis, “Nosocomial infections in the nursery,” Seminars in Pediatric Infectious Diseases, vol. 10, no. 2, pp. 119–129, 1999. View at Publisher · View at Google Scholar · View at Scopus
  113. A. H. Gaur, P. M. Flynn, M. A. Giannini, J. L. Shenep, and R. T. Hayden, “Difference in time to detection: a simple method to differentiate catheter-related from non-catheter-related bloodstream infection in immunocompromised pediatric patients,” Clinical Infectious Diseases, vol. 37, no. 4, pp. 469–475, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. I. Raad, H. A. Hanna, B. Alakech, I. Chatzinikolaou, M. M. Johnson, and J. Tarrand, “Differential time to positivity: a useful method for diagnosing catheter-related bloodstream infections,” Annals of Internal Medicine, vol. 140, no. 1, pp. 18–I39, 2004. View at Google Scholar · View at Scopus
  115. I. Chatzinikolaou, H. Hanna, R. Hachem, B. Alakech, J. Tarrand, and I. Raad, “Differential quantitative blood cultures for the diagnosis of catheter-related bloodstream infections associated with short- and long-term catheters: a prospective study,” Diagnostic Microbiology and Infectious Disease, vol. 50, no. 3, pp. 167–172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. P. Yager, T. Edwards, E. Fu et al., “Microfluidic diagnostic technologies for global public health,” Nature, vol. 442, no. 7101, pp. 412–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Edmond and A. Zaidi, “New approaches to preventing, diagnosing, and treating neonatal sepsis,” PLoS Medicine, vol. 7, no. 3, Article ID e1000213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. N. Mancini, S. Carletti, N. Ghidoli, P. Cichero, R. Burioni, and M. Clementi, “The era of molecular and other non-culture-based methods in diagnosis of sepsis,” Clinical Microbiology Reviews, vol. 23, no. 1, pp. 235–251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Venkatesh, A. Flores, R. A. Luna, and J. Versalovic, “Molecular microbiological methods in the diagnosis of neonatal sepsis,” Expert Review of Anti-Infective Therapy, vol. 8, no. 9, pp. 1037–1048, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. O. Raimundo, H. Heussler, J. B. Bruhn et al., “Molecular epidemiology of coagulase-negative staphylococcal bacteraemia in a newborn intensive care unit,” Journal of Hospital Infection, vol. 51, no. 1, pp. 33–42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Borghesi and M. Stronati, “Strategies for the prevention of hospital-acquired infections in the neonatal intensive care unit,” Journal of Hospital Infection, vol. 68, no. 4, pp. 293–300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. J. D. Horbar, J. Rogowski, P. E. Plsek et al., “Collaborative quality improvement for neonatal intensive care. NIC/Q Project Investigators of the Vermont Oxford Network,” Pediatrics, vol. 107, no. 1, pp. 14–22, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. W. H. Lim, R. Lien, Y. C. Huang et al., “Prevalence and pathogen distribution of neonatal sepsis among very-low-birth-weight infants,” Pediatrics and Neonatology, vol. 53, no. 4, pp. 228–234, 2012. View at Google Scholar
  124. O. K. Helder, J. Brug, C. W. N. Looman, J. B. van Goudoever, and R. F. Kornelisse, “The impact of an education program on hand hygiene compliance and nosocomial infection incidence in an urban Neonatal Intensive Care Unit: an intervention study with before and after comparison,” International Journal of Nursing Studies, vol. 47, no. 10, pp. 1245–1252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. B. C. C. Lam, J. Lee, and Y. L. Lau, “Hand hygiene practices in a neonatal intensive care unit: a multimodal intervention and impact on nosocomial infection,” Pediatrics, vol. 114, no. 5, pp. e565–e571, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. L. Saiman, “Strategies for prevention of nosocomial sepsis in the neonatal intensive care unit,” Current Opinion in Pediatrics, vol. 18, no. 2, pp. 101–106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. E. Kane and G. Bretz, “Reduction in coagulase-negative staphylococcus infection rates in the NICU using evidence-based research,” Neonatal Network, vol. 30, no. 3, pp. 165–174, 2011. View at Google Scholar
  128. S. G. Golombek, A. J. Rohan, B. Parvez, A. L. Salice, and E. F. LaGamma, “‘Proactive’ management of percutaneously inserted central catheters results in decreased incidence of infection in the ELBW population,” Journal of Perinatology, vol. 22, no. 3, pp. 209–213, 2002. View at Publisher · View at Google Scholar · View at Scopus
  129. M. A. C. Hemels, A. van den Hoogen, M. A. Verboon-Maciolek, A. Fleer, and T. G. Krediet, “Prevention of neonatal late-onset sepsis associated with the removal of percutaneously inserted central venous catheters in preterm infants,” Pediatric Critical Care Medicine, vol. 12, no. 4, pp. 445–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. R. J. Baier, J. A. Bocchini, and E. G. Brown, “Selective use of vancomycin to prevent coagulase-negative staphylococcal nosocomial bacteremia in high risk very low birth weight infants,” The Pediatric Infectious Disease Journal, vol. 17, no. 3, pp. 179–183, 1998. View at Publisher · View at Google Scholar · View at Scopus
  131. P. S. Spafford, R. A. Sinkin, C. Cox, L. Reubens, and K. R. Powell, “Prevention of central venous catheter-related coagulase-negative staphylococcal sepsis in neonates,” Journal of Pediatrics, vol. 125, no. 2, pp. 259–263, 1994. View at Publisher · View at Google Scholar · View at Scopus
  132. A. P. Craft, N. N. Finer, and K. J. Barrington, “Vancomycin for prophylaxis against sepsis in preterm neonates,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD001971, 2000. View at Google Scholar · View at Scopus
  133. C. von Eiff, B. Jansen, W. Kohnen, and K. Becker, “Infections associated with medical devices: pathogenesis, management and prophylaxis,” Drugs, vol. 65, no. 2, pp. 179–214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. J. Timsit, Y. Dubois, C. Minet et al., “New materials and devices for preventing catheter-related infections,” Annals of Intensive Care, vol. 1, no. 1, p. 34, 2011. View at Publisher · View at Google Scholar
  135. M. T. McCann, B. F. Gilmore, and S. P. Gorman, “Staphylococcus epidermidis device-related infections: pathogenesis and clinical management,” Journal of Pharmacy and Pharmacology, vol. 60, no. 12, pp. 1551–1571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. M. P. Venkatesh, F. Placencia, and L. E. Weisman, “Coagulase-negative staphylococcal infections in the neonate and child: an update,” Seminars in Pediatric Infectious Diseases, vol. 17, no. 3, pp. 120–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. M. B. Bestul and H. L. VandenBussche, “Antibiotic lock technique: review of the literature,” Pharmacotherapy, vol. 25, no. 2, pp. 211–227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. M. Maiefski, M. E. Rupp, and E. D. Hermsen, “Ethanol lock technique: review of the literature,” Infection Control and Hospital Epidemiology, vol. 30, no. 11, pp. 1096–1108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. E. Y. Huang, C. Chen, F. Abdullah et al., “Strategies for the prevention of central venous catheter infections: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review,” Journal of Pediatric Surgery, vol. 46, no. 10, pp. 2000–2011, 2011. View at Google Scholar
  140. L. Filippi, M. Pezzati, S. di Amario, C. Poggi, and P. Pecile, “Fusidic acid and heparin lock solution for the prevention of catheter-related bloodstream infections in critically ill neonates: a retrospective study and a prospective, randomized trial,” Pediatric Critical Care Medicine, vol. 8, no. 6, pp. 556–562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. J. S. Garland, C. P. Alex, K. J. Henrickson, T. L. McAuliffe, and D. G. Maki, “A vancomycin-heparin lock solution for prevention of nosocomial bloodstream infection in critically ill neonates with peripherally inserted central venous catheters: a prospective, randomized trial,” Pediatrics, vol. 116, no. 2, pp. e198–e205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. J. S. Garland, C. P. Alex, C. D. Mueller et al., “A randomized trial comparing povidone-iodine to a chlorhexidine gluconate-impregnated dressing for prevention of central venous catheter infections in neonates,” Pediatrics, vol. 107, no. 6, pp. 1431–1437, 2001. View at Publisher · View at Google Scholar · View at Scopus
  143. G. L. Darmstadt and J. G. Dinulos, “Neonatal skin care,” Pediatric Clinics of North America, vol. 47, no. 4, pp. 757–782, 2000. View at Google Scholar · View at Scopus
  144. J. F. John and A. M. Harvin, “History and evolution of antibiotic resistance in coagulase-negative staphylococci: susceptibility profiles of new anti-staphylococcal agents,” Therapeutics and Clinical Risk Management, vol. 3, no. 6, pp. 1143–1152, 2007. View at Google Scholar · View at Scopus
  145. S. A. Shelburne, D. M. Musher, K. Hulten et al., “In vitro killing of community-associated methicillin-resistant Staphylococcus aureus with drug combinations,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 10, pp. 4016–4019, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Rochon-Edouard, M. Pestel-Caron, J. F. Lemeland, and F. Caron, “In vitro synergistic effects of double and triple combinations of β-lactams, vancomycin, and netilmicin against methicillin-resistant Staphylococcus aureus strains,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 11, pp. 3055–3060, 2000. View at Publisher · View at Google Scholar · View at Scopus
  147. T. Brilene, H. Soeorg, M. Kiis et al., “In vitro synergy of oxacillin and gentamicin against coagulase-negative staphylococci from blood cultures of neonates with late-onset sepsis,” APMIS: Acta Pathologica, Microbiologica et Immunologica Scandinavica, 2013. View at Publisher · View at Google Scholar
  148. J. G. Deville, S. Adler, P. H. Azimi et al., “Linezolid versus vancomycin in the treatment of known or suspected resistant gram-positive infections in neonates,” The Pediatric Infectious Disease Journal, vol. 22, no. 9, supplement, pp. S158–S163, 2003. View at Google Scholar · View at Scopus
  149. V. G. Meka and H. S. Gold, “Antimicrobial resistance to linezolid,” Clinical Infectious Diseases, vol. 39, no. 7, pp. 1010–1015, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. B. F. Farber, M. H. Kaplan, and A. G. Clogston, “Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics,” Journal of Infectious Diseases, vol. 161, no. 1, pp. 37–40, 1990. View at Google Scholar · View at Scopus
  151. N. Høiby, T. Bjarnsholt, M. Givskov, S. Molin, and O. Ciofu, “Antibiotic resistance of bacterial biofilms,” International Journal of Antimicrobial Agents, vol. 35, no. 4, pp. 322–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. C. Klingenberg, A. Rønnestad, A. S. Anderson et al., “Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness,” Clinical Microbiology and Infection, vol. 13, no. 11, pp. 1100–1111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. I. Adams-Chapman and B. J. Stoll, “Neonatal infection and long-term neurodevelopmental outcome in the preterm infant,” Current Opinion in Infectious Diseases, vol. 19, no. 3, pp. 290–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. J. M. Lorenz, “The outcome of extreme prematurity,” Seminars in Perinatology, vol. 25, no. 5, pp. 348–359, 2001. View at Google Scholar · View at Scopus
  155. D. Moster, R. T. Lie, and T. Markestad, “Long-term medical and social consequences of preterm birth,” The New England Journal of Medicine, vol. 359, no. 3, pp. 262–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. B. E. Stephens and B. R. Vohr, “Neurodevelopmental outcome of the premature infant,” Pediatric Clinics of North America, vol. 56, no. 3, pp. 631–646, 2009. View at Google Scholar
  157. B. J. Stoll, N. I. Hansen, I. Adams-Chapman et al., “Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection,” Journal of the American Medical Association, vol. 292, no. 19, pp. 2357–2365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  158. M. Wheater and J. M. Rennie, “Perinatal infection is an important risk factor for cerebral palsy in very-low-birthweight infants,” Developmental Medicine and Child Neurology, vol. 42, no. 6, pp. 364–367, 2000. View at Publisher · View at Google Scholar · View at Scopus
  159. S. Saigal and L. W. Doyle, “An overview of mortality and sequelae of preterm birth from infancy to adulthood,” The Lancet, vol. 371, no. 9608, pp. 261–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. L. Singer, T. Yamashita, L. Lilien, M. Collin, and J. Baley, “A longitudinal study of developmental outcome of infants with bronchopulmonary dysplasia and very low birth weight,” Pediatrics, vol. 100, no. 6, pp. 987–993, 1997. View at Google Scholar · View at Scopus
  161. J. L. Wynn, J. Neu, L. L. Moldawer, and O. Levy, “Potential of immunomodulatory agents for prevention and treatment of neonatal sepsis,” Journal of Perinatology, vol. 29, no. 2, pp. 79–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. A. King, E. Juszczak, U. Kingdom et al., “Treatment of neonatal sepsis with intravenous immune globulin,” The New England Journal of Medicine, vol. 365, no. 13, pp. 1201–1211, 2011. View at Publisher · View at Google Scholar
  163. M. Otto, “Novel targeted immunotherapy approaches for staphylococcal infection,” Expert Opinion on Biological Therapy, vol. 10, no. 7, pp. 1049–1059, 2011. View at Google Scholar
  164. P. Manzoni, M. Rinaldi, S. Cattani et al., “Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial,” Journal of the American Medical Association, vol. 302, no. 13, pp. 1421–1428, 2009. View at Publisher · View at Google Scholar · View at Scopus