Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 791262, 11 pages
http://dx.doi.org/10.1155/2013/791262
Research Article

LMW Heparin Prevents Increased Kidney Expression of Proinflammatory Mediators in (NZBxNZW)F1 Mice

RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037 Tromsø, Norway

Received 11 February 2013; Revised 5 July 2013; Accepted 15 August 2013

Academic Editor: Kazuya Iwabuchi

Copyright © 2013 Annica Hedberg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We have previously demonstrated that continuous infusion of low molecular weight (LMW) heparin delays autoantibody production and development of lupus nephritis in (NZBxNZW)F1 (B/W) mice. In this study we investigated the effect of LMW heparin on renal cytokine and chemokine expression and on nucleosome-mediated activation of nucleosome-specific splenocytes. Total mRNA extracted from kidneys of heparin-treated or -untreated B/W mice was analysed by qPCR for the expression of several cytokines, chemokines, and Toll-like receptors. Splenocytes taken from B/W mice were stimulated with nucleosomes with or without the presence of heparin. Splenocyte cell proliferation as thymidine incorporation and the expression of costimulatory molecules and cell activation markers were measured. Heparin treatment of B/W mice reduced the in vivo expression of CCR2, IL1β, and TLR7 compared to untreated B/W mice. Nucleosome-induced cell proliferation of splenocytes was not influenced by heparin. The expression of CD80, CD86, CD69, CD25, CTLA-4, and TLR 2, 7, 8, and 9 was upregulated upon stimulation by nucleosomes, irrespective of whether heparin was added to the cell culture or not. In conclusion, treatment with heparin lowers the kidney expression of proinflammatory mediators in B/W mice but does not affect nucleosomal activation of splenocytes.