Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 808367, 9 pages
http://dx.doi.org/10.1155/2013/808367
Research Article

Potential Immune Modularly Role of Glycine in Oral Gingival Inflammation

1Department of Orthodontics, Welschnonnenstraße 17, 53111 Bonn, Germany
2Department of Prosthodontics, Preclinical Education, and Material Sciences, Welschnonnenstraße 17, 53111 Bonn, Germany
3Department of Periodontology, Operative and Preventive Dentistry, Welschnonnenstraße 17, 53111 Bon, Germany
4Experimental Dento-Maxillo-Facial Medicine (CRU 208), Welschnonnenstraße 17, 53111 Bonn, Germany

Received 6 August 2013; Accepted 2 October 2013

Academic Editor: Lenin Pavón

Copyright © 2013 Teresa Schaumann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Kornman, “Mapping the pathogenesis of periodontitis: a new look,” Journal of Periodontology, vol. 79, supplement 8, pp. 1560–1568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Sandros, C. Karlsson, D. F. Lappin, P. M. Madianos, D. F. Kinane, and P. M. Papapanou, “Cytokine responses of oral epithelial cells to Porphyromonas gingivalis infection,” Journal of Dental Research, vol. 79, no. 10, pp. 1808–1814, 2000. View at Google Scholar · View at Scopus
  3. B. A. Dale, “Periodontal epithelium: a newly recognized role in health and disease,” Periodontology 2000, vol. 30, no. 1, pp. 70–78, 2002. View at Google Scholar · View at Scopus
  4. K. T. Izutsu, C. M. Belton, A. Chan et al., “Involvement of calcium in interactions between gingival epithelial cells and Porphyromonas gingivalis,” FEMS Microbiology Letters, vol. 144, no. 2-3, pp. 145–150, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Belton, P. C. Goodwin, S. Fatherazi, M. M. Schubert, R. J. Lamont, and K. T. Izutsu, “Calcium oscillations in gingival epithelial cells infected with Porphyromonas gingivalis,” Microbes and Infection, vol. 6, no. 5, pp. 440–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Dinarello, “Biologic basis for interleukin-1 in disease,” Blood, vol. 87, no. 6, pp. 2095–2147, 1996. View at Google Scholar · View at Scopus
  7. T. Steinberg, B. Dannewitz, P. Tomakidi et al., “Analysis of interleukin-1β-modulated mRNA gene transcription in human gingival keratinocytes by epithelia-specific cDNA microarrays,” Journal of Periodontal Research, vol. 41, no. 5, pp. 426–446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. O. H. Ryu, S. J. Choi, A. M. G. Linares et al., “Gingival epithelial cell expression of macrophage inflammatory pProtein-1α induced by interleukin-1β and lipopolysaccharide,” Journal of Periodontology, vol. 78, no. 8, pp. 1627–1634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Ansel, P. Perry, J. Brown et al., “Cytokine modulation of keratinocyte cytokines,” Journal of Investigative Dermatology, vol. 94, supplement 6, pp. 101S–107S, 1990. View at Publisher · View at Google Scholar
  10. M. D. Wheeler, K. Ikejema, N. Enomoto et al., “Glycine: a new anti-inflammatory immunonutrient,” Cellular and Molecular Life Sciences, vol. 56, no. 9-10, pp. 843–856, 1999. View at Google Scholar · View at Scopus
  11. Z. Zhong, M. D. Wheeler, X. Li et al., “L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 6, no. 2, pp. 229–240, 2003. View at Publisher · View at Google Scholar
  12. R. Y. Gundersen, P. Vaagenes, T. Breivik, F. Fonnum, and P. K. Opstad, “Glycine—an important neurotransmitter and cytoprotective agent,” Acta Anaesthesiologica Scandinavica, vol. 49, no. 8, pp. 1108–1116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Spittler, C. M. Reissner, R. Oehler et al., “Immunomodulatory effects of glycine on LPS-treated monocytes: reduced TNF-α production and accelerated IL-10 expression,” FASEB Journal, vol. 13, no. 3, pp. 563–571, 1999. View at Google Scholar · View at Scopus
  14. R. F. Stachlewitz, X. Li, S. Smith, H. Bunzendahl, L. M. Graves, and R. G. Thurman, “Glycine inhibits growth of T lymphocytes by an IL-2-independent mechanism,” Journal of Immunology, vol. 164, no. 1, pp. 176–182, 2000. View at Google Scholar · View at Scopus
  15. M. Froh, R. G. Thurman, and M. D. Wheeler, “Molecular evidence for a glycine-gated chloride channel in macrophages and leukocytes,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 283, no. 4, pp. G856–G863, 2002. View at Google Scholar · View at Scopus
  16. R. Bruck, J. Wardi, H. Aeed et al., “Glycine modulates cytokine secretion, inhibits hepatic damage and improves survival in a model of endotoxemia in mice,” Liver International, vol. 23, no. 4, pp. 276–282, 2003. View at Google Scholar · View at Scopus
  17. X. Li, B. U. Bradford, M. D. Wheeler et al., “Dietary glycine prevents peptidoglycan polysaccharide-induced reactive arthritis in the rat: role for glycine-gated chloride channel,” Infection and Immunity, vol. 69, no. 9, pp. 5883–5891, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Rajendra, J. W. Lynch, and P. R. Schofield, “The glycine receptor,” Pharmacology and Therapeutics, vol. 73, no. 2, pp. 121–146, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Denda, S. Fuziwara, and K. Inoue, “Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis,” Journal of Investigative Dermatology, vol. 121, no. 2, pp. 362–367, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Breivik, Y. Gundersen, F. Fonnum, P. Vaagenes, and P. K. Opstad, “Chronic glycine treatment inhibits ligature-induced periodontal disease in Wistar rats,” Journal of Periodontal Research, vol. 40, no. 1, pp. 43–47, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Wolf, S. Lossdörfer, N. Abuduwali et al., “Effect of intermittent PTH(1-34) on human periodontal ligament cells transplanted into immunocompromised mice,” Tissue Engineering Part A, vol. 18, no. 17-18, pp. 1849–1856, 2012. View at Publisher · View at Google Scholar
  22. W. Götz, T. Gerber, B. Michel, S. Lossdörfer, K. O. Henkel, and F. Heinemann, “Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone) osteogenesis: a study on biopsies from human jaws,” Clinical Oral Implants Research, vol. 19, no. 10, pp. 1016–1026, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Wolf, S. Lossdörfer, N. Abuduwali, and A. Jäge, “Potential role of high mobility group box protein 1 and intermittent PTH (1-34) in periodontal tissue repair following orthodontic tooth movement in rats,” Clinical Oral Investigations, vol. 17, no. 3, pp. 989–997, 2013. View at Publisher · View at Google Scholar
  24. D. Kraus, J. Winter, S. Jepsen, A. Jäger, R. Meyer, and J. Deschner, “Interactions of adiponectin and lipopolysaccharide from Porphyromonas gingivalis on human oral epithelial cells,” PLoS ONE, vol. 7, no. 2, Article ID e30716, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Nokhbehsaim, B. Deschner, J. Winter et al., “Interactions of regenerative, inflammatory and biomechanical signals on bone morphogenetic protein-2 in periodontal ligament cells,” Journal of Periodontal Research, vol. 46, no. 3, pp. 374–381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Vardar-Sengul, S. Arora, H. Baylas, and D. Mercola, “Expression profile of human gingival fibroblasts induced by interleukin-1 β reveals central role of nuclear factor-kappa b in stabilizing human gingival fibroblasts during inflammation,” Journal of Periodontology, vol. 80, no. 5, pp. 833–849, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. W. Pfaffl, “A new mathematical model for relative quantification in real-time RT-PCR,” Nucleic acids research, vol. 29, no. 9, article e45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. T. I. Webb and J. W. Lynch, “Molecular pharmacology of the glycine receptor chloride channel,” Current Pharmaceutical Design, vol. 13, no. 23, pp. 2350–2367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Béchade, “Expression of glycine receptor a subunits and gephyrin in cultured spinal neurons,” European Journal of Neuroscience, vol. 8, no. 2, pp. 429–435, 1996. View at Google Scholar · View at Scopus
  30. A. Rawlinson, M. H. N. Dalati, S. Rahman, T. F. Walsh, and A. L. Fairclough, “Interleukin-1 and IL-1 receptor antagonist in gingival crevicular fluid,” Journal of Clinical Periodontology, vol. 27, no. 10, pp. 738–743, 2000. View at Google Scholar · View at Scopus
  31. L. I. McKay and J. A. Cidlowski, “Cross-talk between nuclear factor-κB and the steroid hormone receptors: mechanisms of mutual antagonism,” Molecular Endocrinology, vol. 12, no. 1, pp. 45–56, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Nokhbehsaim, S. Eick, A. V. Nogueira et al., “Stimulation of MMP-1 and CCL2 by NAMPT in PDL cells,” Mediators of Inflammation, vol. 2013, Article ID 437123, 12 pages, 2013. View at Publisher · View at Google Scholar
  33. M. Nokhbehsaim, B. Deschner, J. Winter et al., “Anti-inflammatory effects of EMD in the presence of biomechanical loading and interleukin-1β in vitro,” Clinical Oral Investigations, vol. 16, no. 1, pp. 275–283, 2012. View at Publisher · View at Google Scholar · View at Scopus