Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 924363, 5 pages
http://dx.doi.org/10.1155/2013/924363
Review Article

The Role of IL-33 in Rheumatic Diseases

1Department of Rheumatology and Clinical Immunology, The First Hospital of Xiamen University, Xiamen 361003, China
2Basic Medical Department of Medical College, Xiamen University, Xiamen 361003, China
3Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Received 3 May 2013; Accepted 13 August 2013

Academic Editor: Jianying Zhang

Copyright © 2013 Lihua Duan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Schmitz, A. Owyang, E. Oldham et al., “IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines,” Immunity, vol. 23, no. 5, pp. 479–490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Préfontaine, S. Lajoie-Kadoch, S. Foley et al., “Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells,” Journal of Immunology, vol. 183, no. 8, pp. 5094–5103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Moussion, N. Ortega, and J. Girard, “The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel “alarmin”?” PLoS ONE, vol. 3, no. 10, Article ID e3331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Nile, E. Barksby, P. Jitprasertwong, P. M. Preshaw, and J. J. Taylor, “Expression and regulation of interleukin-33 in human monocytes,” Immunology, vol. 130, no. 2, pp. 172–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Haraldsen, J. Balogh, J. Pollheimer, J. Sponheim, and A. M. Küchler, “Interleukin-33—cytokine of dual function or novel alarmin?” Trends in Immunology, vol. 30, no. 5, pp. 227–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Xu, H. R. Jiang, P. Kewin et al., “IL-33 exacerbates antigen-induced arthritis by activating mast cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 31, pp. 10913–10918, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Palmer, D. Talabot-Ayer, C. Lamacchia et al., “Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis,” Arthritis and Rheumatism, vol. 60, no. 3, pp. 738–749, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. N. Pushparaj, K. T. Hwee, C. H. Shiau et al., “The cytokine interleukin-33 mediates anaphylactic shock,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 24, pp. 9773–9778, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Pastorelli, R. R. Garg, S. B. Hoang et al., “Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 17, pp. 8017–8022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. B. Seidelin, J. T. Bjerrum, M. Coskun, B. Widjaya, B. Vainer, and O. H. Nielsen, “IL-33 is upregulated in colonocytes of ulcerative colitis,” Immunology Letters, vol. 128, no. 1, pp. 80–85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Chen, L. Duan, A. Xiong et al., “Blockade of IL-33 ameliorates Con A-induced hepatic injury by reducing NKT cell activation and IFN-γ production in mice,” Journal of Molecular Medicine, vol. 90, no. 12, pp. 1505–1515, 2012. View at Publisher · View at Google Scholar
  12. Y. Liang, Z. Jie, L. Hou et al., “IL-33 induces nuocytes and modulates liver injury in viral hepatitis,” Journal of Immunology, vol. 190, no. 11, pp. 5666–5675, 2013. View at Publisher · View at Google Scholar
  13. N. Sakai, H. L. Van Sweringen, R. C. Quillin et al., “Interleukin-33 is hepatoprotective during liver ischemia/reperfusion in mice,” Hepatology, vol. 56, no. 4, pp. 1468–1478, 2012. View at Publisher · View at Google Scholar
  14. C. A. Dinarello, “An IL-1 family member requires caspase-1 processing and signals through the ST2 receptor,” Immunity, vol. 23, no. 5, pp. 461–462, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Lefrancais, S. Roga, V. Gautier et al., “IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 5, pp. 1673–1678, 2012. View at Google Scholar
  16. D. Talabot-Ayer, C. Lamacchia, C. Gabay, and G. Palmer, “Interleukin-33 is biologically active independently of caspase-1 cleavage,” The Journal of Biological Chemistry, vol. 284, no. 29, pp. 19420–19426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Roussel, M. Erard, C. Cayrol, and J. Girard, “Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket,” EMBO Reports, vol. 9, no. 10, pp. 1006–1012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Carriere, L. Roussel, N. Ortega et al., “IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 1, pp. 282–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Lingel, T. M. Weiss, M. Niebuhr et al., “Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors—insight into heterotrimeric IL-1 signaling complexes,” Structure, vol. 17, no. 10, pp. 1398–1410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. A. Chackerian, E. R. Oldham, E. E. Murphy, J. Schmitz, S. Pflanz, and R. A. Kastelein, “IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex,” Journal of Immunology, vol. 179, no. 4, pp. 2551–2555, 2007. View at Google Scholar · View at Scopus
  21. M. Funakoshi-Tago, K. Tago, M. Hayakawa et al., “TRAF6 is a critical signal transducer in IL-33 signaling pathway,” Cellular Signalling, vol. 20, no. 9, pp. 1679–1686, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. L. H. Ho, T. Ohno, K. Oboki et al., “IL-33 induces IL-13 production by mouse mast cells independently of IgE-FcepsilonRI signals,” Journal of Leukocyte Biology, vol. 82, no. 6, pp. 1481–1490, 2007. View at Google Scholar
  23. M. Iikura, H. Suto, N. Kajiwara et al., “IL-33 can promote survival, adhesion and cytokine production in human mast cells,” Laboratory Investigation, vol. 87, no. 10, pp. 971–978, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Allakhverdi, D. E. Smith, M. R. Comeau, and G. Delespesse, “Cutting edge: the ST2 ligand IL-33 potently activates and drives maturation of human mast cells,” Journal of Immunology, vol. 179, no. 4, pp. 2051–2054, 2007. View at Google Scholar · View at Scopus
  25. H. J. Na, S. A. Hudson, and B. S. Bochner, “IL-33 enhances Siglec-8 mediated apoptosis of human eosinophils,” Cytokine, vol. 57, no. 1, pp. 169–174, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Y. S. Chow, C. K. Wong, P. F. Y. Cheung, and C. W. K. Lam, “Intracellular signaling mechanisms regulating the activation of humaneosinophils by the novel Th2 cytokine IL-33: implications for allergicinflammation,” Cellular and Molecular Immunology, vol. 7, no. 1, pp. 26–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. W. B. Cherry, J. Yoon, K. R. Bartemes, K. Iijima, and H. Kita, “A novel IL-1 family cytokine, IL-33, potently activates human eosinophils,” Journal of Allergy and Clinical Immunology, vol. 121, no. 6, pp. 1484–1490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Blom, B. C. Poulsen, B. M. Jensen, A. Hansen, and L. K. Poulsen, “IL-33 induces IL-9 production in human CD4+ T cells and basophils,” PLoS ONE, vol. 6, no. 7, Article ID e21695, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Schneider, A. Petit-Bertron, R. Bricard et al., “IL-33 activates unprimed murine basophils directly in vitro and induces their in vivo expansion indirectly by promoting hematopoietic growth factor production,” Journal of Immunology, vol. 183, no. 6, pp. 3591–3597, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Bourgeois, L. P. Van, M. Samson et al., “The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-γ production,” European Journal of Immunology, vol. 39, no. 4, pp. 1046–1055, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Iwahana, K. Yanagisawa, A. Ito-Kosaka et al., “Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells,” European Journal of Biochemistry, vol. 264, no. 2, pp. 397–406, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Bergers, A. Reikerstorfer, S. Braselmann, P. Graninger, and M. Busslinger, “Alternative promoter usage of the Fos-responsive gene Fit-1 generates mRNA isoforms coding for either secreted or membrane-bound proteins related to the IL-1 receptor,” EMBO Journal, vol. 13, no. 5, pp. 1176–1188, 1994. View at Google Scholar · View at Scopus
  33. T. Gächter, A. K. Werenskiold, and R. Klemenz, “Transcription of the interleukin-1 receptor-related T1 gene is initiated at different promoters in mast cells and fibroblasts,” The Journal of Biological Chemistry, vol. 271, no. 1, pp. 124–129, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Hayakawa, M. Hayakawa, A. Kume, and S. Tominaga, “Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation,” The Journal of Biological Chemistry, vol. 282, no. 36, pp. 26369–26380, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. I. B. McInnes and G. Schett, “Cytokines in the pathogenesis of rheumatoid arthritis,” Nature Reviews Immunology, vol. 7, no. 6, pp. 429–442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. K. Ulfgren, S. Lindblad, L. Klareskog, J. Andersson, and U. Andersson, “Detection of cytokine producing cells in the synovial membrane from patients with rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 54, no. 8, pp. 654–661, 1995. View at Google Scholar · View at Scopus
  37. A. Y. Gasparyan, A. Sandoo, A. Stavropoulos-Kalinoglou, and G. D. Kitas, “Mean platelet volume in patients with rheumatoid arthritis: the effect of anti-TNF-α therapy,” Rheumatology International, vol. 30, no. 8, pp. 1125–1129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Gonzalez-Juanatey and M. A. Gonzalez-Gay, “Rheumatoid arthritis and anti-TNF-α therapy,” Atherosclerosis, vol. 181, no. 1, p. 209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Feldmann and R. N. Maini, “Anti-TNFα therapy of rheumatoid arthritis: what have we learned?” Annual Review of Immunology, vol. 19, pp. 163–196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. E. M. Paleolog, S. Young, A. C. Stark, R. V. McCloskey, M. Feldmann, and R. N. Maini, “Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 41, no. 7, pp. 1258–1265, 1998. View at Google Scholar
  41. B. P. Leung, D. Xu, S. Culshaw, I. B. McInnes, and F. Y. Liew, “A novel therapy of murine collagen-induced arthritis with soluble T1/ST2,” Journal of Immunology, vol. 173, no. 1, pp. 145–150, 2004. View at Google Scholar · View at Scopus
  42. Y. Matsuyama, H. Okazaki, H. Tamemoto et al., “Increased levels of interleukin 33 in sera and synovial fluid from patients with active rheumatoid arthritis,” Journal of Rheumatology, vol. 37, no. 1, pp. 18–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. S. Hong, S. J. Moon, Y. B. Joo et al., “Measurement of interleukin-33 (IL-33) and IL-33 receptors (sST2 and ST2L) in patients with rheumatoid arthritis,” Journal of Korean Medical Science, vol. 26, no. 9, pp. 1132–1139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Kageyama, E. Torikai, K. Tsujimura, and M. Kobayashi, “Involvement of IL-33 in the pathogenesis of rheumatoid arthritis: the effect of etanercept on the serum levels of IL-33,” Modern Rheumatology, vol. 22, no. 1, pp. 89–93, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. I. S. Wood, B. Wang, and P. Trayhurn, “IL-33, a recently identified interleukin-1 gene family member, is expressed in human adipocytes,” Biochemical and Biophysical Research Communications, vol. 384, no. 1, pp. 105–109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. W. A. Verri Jr., F. O. Souto, S. M. Vieira et al., “IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy,” Annals of the Rheumatic Diseases, vol. 69, no. 9, pp. 1697–1703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Matsuyama, H. Okazaki, M. Hoshino et al., “Sustained elevation of interleukin-33 in sera and synovial fluids from patients with rheumatoid arthritis non-responsive to anti-tumor necrosis factor: possible association with persistent IL-1β signaling and a poor clinical response,” Rheumatology International, vol. 32, no. 5, pp. 1397–1401, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Turchetti, J. Yazdany, I. Palla, E. Yelin, and M. Mosca, “Systemic lupus erythematosus and the economic perspective: a systematic literature review and points to consider,” Clinical and Experimental Rheumatology, vol. 30, no. 4, supplement 73, pp. S116–S122, 2012. View at Google Scholar
  49. M. Y. Mok, F. P. Huang, W. K. Ip et al., “Serum levels of IL-33 and soluble ST2 and their association with disease activity in systemic lupus erythematosus,” Rheumatology, vol. 49, no. 3, Article ID kep402, pp. 520–527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. Z. Yang, Y. Liang, W. Xi, C. Li, and R. Zhong, “Association of increased serum IL-33 levels with clinical and laboratory characteristics of systemic lupus erythematosus in Chinese population,” Clinical and Experimental Medicine, vol. 11, no. 2, pp. 75–80, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. G. W. Han, L. W. Zeng, C. X. Liang et al., “Serum levels of IL-33 is increased in patients with ankylosing spondylitis,” Clinical Rheumatology, vol. 30, no. 12, pp. 1583–1588, 2011. View at Publisher · View at Google Scholar
  52. G. X. Li, S. Wang, Z. H. Duan, Z. Zeng, and F. M. Pan, “Serum levels of IL-33 and its receptor ST2 are elevated in patients with ankylosing spondylitis,” Scandinavian Journal of Rheumatology, vol. 42, no. 3, pp. 226–231, 2013. View at Publisher · View at Google Scholar
  53. S. K. Shinjo, F. H. Souza, and J. C. Moraes, “Dermatomyositis and polymyositis: from immunopathology to immunotherapy (immunobiologics),” Revista Brasileira de Reumatologia, vol. 53, no. 1, pp. 105–110, 2013. View at Publisher · View at Google Scholar
  54. L. Yuan, L. Yao, L. Zhao, L. Xia, H. Shen, and J. Lu, “Serum levels of soluble ST2 and interleukin-33 in patients with dermatomyositis and polymyositis,” Clinical and Experimental Rheumatology, vol. 31, no. 3, pp. 428–432, 2013. View at Google Scholar
  55. K. Hamzaoui, W. Kaabachi, B. Fazaa, L. Zakraoui, I. Mili Boussen, and F. Haj Sassi, “Serum IL-33 levels and skin mRNA expression in Behcet's disease,” Clinical and Experimental Rheumatology. In press.
  56. B. Terrier, G. Geri, W. Chaara et al., “Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis,” Arthritis and Rheumatism, vol. 64, no. 6, pp. 2001–2011, 2012. View at Publisher · View at Google Scholar
  57. J. Deng, B. R. Younge, R. A. Olshen, J. J. Goronzy, and C. M. Weyand, “Th17 and th1 T-cell responses in giant cell arteritis,” Circulation, vol. 121, no. 7, pp. 906–915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. F. Ciccia, R. Alessandro, A. Rizzo et al., “IL-33 is overexpressed in the inflamed arteries of patients with giant cell arteritis,” Annals of the Rheumatic Diseases, vol. 72, no. 2, pp. 258–264, 2013. View at Publisher · View at Google Scholar
  59. J. Varga and D. Abraham, “Systemic sclerosis: a prototypic multisystem fibrotic disorder,” Journal of Clinical Investigation, vol. 117, no. 3, pp. 557–567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Manetti, S. Guiducci, C. Ceccarelli et al., “Increased circulating levels of interleukin 33 in systemic sclerosis correlate with early disease stage and microvascular involvement,” Annals of the Rheumatic Diseases, vol. 70, no. 10, pp. 1876–1878, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Terras, E. Opitz, R. K. Moritz, S. Höxtermann, T. Gambichler, and A. Kreuter, “Increased serum IL-33 levels may indicate vascular involvement in systemic sclerosis,” Annals of the Rheumatic Diseases, vol. 72, no. 1, pp. 144–145, 2013. View at Publisher · View at Google Scholar
  62. A. L. Rankin, J. B. Mumm, E. Murphy et al., “IL-33 induces IL-13-dependent cutaneous fibrosis,” Journal of Immunology, vol. 184, no. 3, pp. 1526–1535, 2010. View at Publisher · View at Google Scholar · View at Scopus