Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2014, Article ID 150239, 6 pages
http://dx.doi.org/10.1155/2014/150239
Clinical Study

High Prevalence of Antinuclear Antibodies in Children with Thyroid Autoimmunity

1Department of Pediatrics, Endocrinology Unit, “Sapienza” University of Rome, Via Regina Elena 324, 00161 Rome, Italy
2Department of Internal Medicine and Medical Specialties, Rheumatology, “Sapienza” University of Rome, Rome, Italy

Received 8 December 2013; Accepted 8 January 2014; Published 24 February 2014

Academic Editor: Marvin J. Fritzler

Copyright © 2014 Maria Segni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. H. White and D. L. Robbins, “Clinical significance and interpretation of antinuclear antibodies,” Western Journal of Medicine, vol. 147, no. 2, pp. 210–213, 1987. View at Google Scholar · View at Scopus
  2. N. Agmon-Levin, J. Damoiseaux, C. Kallenberg et al., “International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies,” Annals of the Rheumatic Diseases, vol. 73, pp. 17–23, 2013. View at Publisher · View at Google Scholar
  3. A. P. Weetman, “Non-thyroid autoantibodies inauitoimmune thyroid disease,” Best Practice and Research, vol. 19, no. 1, pp. 17–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Conti, C. Alessandri, D. Bompane et al., “Autoantibody profile in systemic lupus erythematosus with psychiatric manifestations: a role for anti-endothelial-cell antibodies,” Arthritis Research & Therapy, vol. 6, no. 4, pp. R366–R372, 2004. View at Google Scholar · View at Scopus
  5. M. R. Arbuckle, M. T. McClain, M. V. Rubertone et al., “Development of autoantibodies before the clinical onset of systemic lupus erythematosus,” New England Journal of Medicine, vol. 349, no. 16, pp. 1526–1533, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. F. G. A. Delemarre, P. J. Simons, and H. A. Drexhage, “Histomorphological aspects of the development of thyroid autoimmune diseases: consequences for our understanding of endocrine ophthalmopathy,” Thyroid, vol. 6, no. 4, pp. 369–377, 1996. View at Google Scholar · View at Scopus
  7. B. Rapoport and S. M. McLachlan, “Thyroid autoimmunity,” Journal of Clinical Investigation, vol. 108, no. 9, pp. 1253–1259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. G. S. Eisenbarth and P. A. Gottlieb, “Medical progress: autoimmune polyendocrine syndromes,” New England Journal of Medicine, vol. 350, no. 20, pp. 2068–2079, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Boelaert, P. R. Newby, M. J. Simmonds et al., “Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease,” American Journal of Medicine, vol. 123, no. 2, pp. 183.e1–183.e9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Lazurova and K. Benhatchi, “Autoimmune Thyroid diseases and nonorgan-specific autoimmunity,” Polskie Archiwum Medycyny Wewnętrznej, vol. 122, supplement 1, pp. 55–59, 2012. View at Google Scholar
  11. D. Mihailova, R. Grigorova, B. Vassileva et al., “Autoimmune thyroid disorders in juvenile chronic arthritis and systemic lupus erythematosus,” Advances in Experimental Medicine and Biology, vol. 455, pp. 55–60, 1999. View at Google Scholar · View at Scopus
  12. S. Stagi, T. Giani, G. Simonini, and F. Falcini, “Thyroid function, autoimmune thyroiditis and coeliac disease in juvenile idiopathic arthritis,” Rheumatology, vol. 44, no. 4, pp. 517–520, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. G. Tektonidou, M. Anapliotou, P. Vlachoyiannopoulos, and H. M. Moutsopoulos, “Presence of systemic autoimmune disorders in patients with autoimmune thyroid diseases,” Annals of the Rheumatic Diseases, vol. 63, no. 9, pp. 1159–1161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Lazúrová, K. Benhatchi, J. Rovenský et al., “Autoimmune thyroid disease and autoimmune rheumatic disorders: a two-sided analysis,” Annals of the New York Academy of Sciences, vol. 1173, pp. 211–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Inamo and K. Harada, “Antinuclear antibody positivity in pediatric patients with autoimmune thyroid disease,” Journal of Rheumatology, vol. 24, no. 3, pp. 576–578, 1997. View at Google Scholar · View at Scopus
  16. R. Priori, E. Medda, F. Conti et al., “Familial autoimmunity as a risk factor for systemic lupus erythematosus and vice versa: a case-control study,” Lupus, vol. 12, no. 10, pp. 735–740, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Valesini, C. Alessandri, D. Celestino, and F. Conti, “Anti-endothelial antibodies and neuropsychiatric systemic lupus erythematosus,” Annals of the New York Academy of Sciences, vol. 1069, pp. 118–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Colasanti, A. Maselli, F. Conti et al., “Autoantibodies to estrogen receptor α interfere with T lymphocyte homeostasis and are associated with disease activity in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 64, no. 3, pp. 778–787, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Margutti, M. Sorice, F. Conti et al., “Screening of an endothelial cDNA library identifies the C-terminal region of Nedd5 as a novel autoantigen in systemic lupus erythematosus with psychiatric manifestations,” Arthritis Research & Therapy, vol. 7, no. 4, pp. R896–R903, 2005. View at Google Scholar · View at Scopus
  20. G. C. Tsokos, “Mechanisms of disease: systemic lupus erythematosus,” New England Journal of Medicine, vol. 365, no. 22, pp. 2110–2121, 2011. View at Google Scholar · View at Scopus
  21. F. Conti, F. R. Spinelli, C. Alessandri, and G. Valesini, “Toll-like receptors and lupus nephritis,” Clinical Reviews in Allergy and Immunology, vol. 40, no. 3, pp. 192–198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Perricone, C. Ciccacci, F. Ceccarelli et al., “TRAF3IP2 gene and systemic lupus erythematosus: association with disease susceptibility and pericarditis development,” Immunogenetics, vol. 65, pp. 703–709, 2013. View at Publisher · View at Google Scholar
  23. F. Conti, C. Alessandri, C. Perricone et al., “Neurocognitive dysfunction in systemic lupus erythematosus: association with antiphospholipid antibodies, disease activity and chronic damage,” PLoS ONE, vol. 7, no. 3, Article ID e33824, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Conti, F. Ceccarelli, L. Massaro et al., “Evaluation of the patient acceptable symptom state (PASS) in Italian patients affected by systemic lupus erythematosus: association with disease activity indices,” PLoS ONE, vol. 8, Article ID e73517, 2013. View at Google Scholar
  25. C. Iannuccelli, F. R. Spinelli, M. P. Guzzo et al., “Fatigue and widespread pain in Systemic Lupus Erythematosus and Sjogren's Syndrome: symptoms of the inflammatory disease or associated Fibromyalgia?” Clinical and Experimental Rheumatology, vol. 30, pp. S117–S121, 2012. View at Google Scholar
  26. M. Satoh, E. K. L. Chan, L. A. Ho et al., “Prevalence and sociodemographic correlates of antinuclear antibodies in United States,” Arthritis & Rheumatism, vol. 64, pp. 2319–2327, 2012. View at Publisher · View at Google Scholar
  27. M. O. Esteves Hilário, C. A. Len, S. Campos Roja, M. T. Terreri, G. Almeida, and L. E. Coelho Andrade, “Frequency of antinuclear antibodies in healthy children and adolescents,” Clinical Pediatrics, vol. 43, no. 7, pp. 637–642, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Zettinig, A. Tanew, G. Fischer, W. Mayr, R. Dudczak, and M. Weissel, “Autoimmune diseases in vitiligo: do anti-nuclear antibodies decrease thyroid volume?” Clinical and Experimental Immunology, vol. 131, no. 2, pp. 347–354, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. D. H. Solomon, A. J. Kavanaugh, P. H. Schur et al., “Evidence-based guidelines for the use of immunologic tests: antinuclear antibody testing,” Arthritis and Rheumatism, vol. 47, no. 4, pp. 434–444, 2002. View at Google Scholar · View at Scopus
  30. H. A. Mariz, E. I. Sato, S. H. Barbosa, S. H. Rodrigues, A. Dellavance, and L. E. C. Andrade, “Pattern on the antinuclear antibody-HEp-2 test is a critical parameter for discriminating antinuclear antibody-positive healthy individuals and patients with autoimmune rheumatic diseases,” Arthritis and Rheumatism, vol. 63, no. 1, pp. 191–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. K. S. Torok and T. Arkachaisri, “Autoimmune thyroiditis in antinuclear antibody positive children without rheumatologic disease,” Pediatric Rheumatology, vol. 8, article 15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Loviselli, L. Grasso, M. Songini et al., “The sardinian autoimmunity study: 3. Studies on circulating antithyroid antibodies in sardinian schoolchildren: relationship to goiter prevalence and thyroid function,” Thyroid, vol. 11, no. 9, pp. 849–857, 2001. View at Google Scholar · View at Scopus
  33. P. L. Meroni and P. H. Schur, “ANA screening: an old test with new recommendations,” Annals of the Rheumatic Diseases, vol. 69, no. 8, pp. 1420–1422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. S. Pisetsky, “Antinuclear antibodies in healthy people: the tip of autoimmunity's iceberg?” Arthritis Research and Therapy, vol. 13, no. 2, article 109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Colasanti, C. Alessandri, A. Capozzi et al., “Autoantibodies specific to a peptide of β2-glycoprotein I cross-react with TLR4 inducing a pro-inflammatory phenotype in endothelial cells and monocytes,” Blood, vol. 120, pp. 3360–3370, 2012. View at Publisher · View at Google Scholar
  36. S. Nagata, R. Hanayama, and K. Kawane, “Autoimmunity and the clearance of dead cells,” Cell, vol. 140, no. 5, pp. 619–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. U. S. Gaipl, A. Kuhn, A. Sheriff et al., “Clearance of apoptotic cells in human SLE,” Current Directions in Autoimmunity, vol. 9, pp. 173–187, 2006. View at Google Scholar · View at Scopus
  38. A. Kawashima, K. Tanigawa, T. Akama et al., “Fragments of cenomic DNA released by injured cells activate innate immunity and suppress endocrine function in the thyroid,” Endocrinology, vol. 152, no. 4, pp. 1702–1712, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Kawashima, K. Tanigawa, T. Akama, A. Yoshihara, N. Ishii, and K. Suzuki, “Innate immune activation and thyroid autoimmunity,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 12, pp. 3661–3671, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Kokkonen, M. Mullazehi, E. Berglin et al., “Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis,” Arthritis Research and Therapy, vol. 13, no. 1, article R13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Moinzadeh, S. I. Nihtyanova, K. Howell, V. H. Ong, and C. P. Denton, “Inpact of hallmark autoantibody reactivity on early diagnosis in scleroderma,” Clinical Reviews in Allergy & Immunology, vol. 43, pp. 249–255, 2012. View at Publisher · View at Google Scholar