Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2014, Article ID 282495, 6 pages
http://dx.doi.org/10.1155/2014/282495
Review Article

Involvement of the Circadian Rhythm and Inflammatory Cytokines in the Pathogenesis of Rheumatoid Arthritis

1Faculty of Health Sciences, Kobe University School of Medicine, Kobe 654-0142, Japan
2Department of General Internal Medicine, Kobe University School of Medicine, Kobe 650-0017, Japan
3Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
4Clinical Immunology, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma, Kobe 654-0142, Japan

Received 5 March 2014; Accepted 24 April 2014; Published 8 May 2014

Academic Editor: Mizuko Mamura

Copyright © 2014 Kohsuke Yoshida et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Czeisler, J. F. Duffy, T. L. Shanahan et al., “Stability, precision, and near-24-hour period of the human circadian pacemaker,” Science, vol. 284, no. 5423, pp. 2177–2181, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. J. F. Duffy, S. W. Cain, A.-M. Chang et al., “Sex difference in the near-24-hour intrinsic period of the human circadian timing system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 3, pp. 15602–15608, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Gaston and M. Menaker, “Pineal function: the biological clock in the sparrow?” Science, vol. 160, no. 3832, pp. 1125–1127, 1968. View at Google Scholar · View at Scopus
  4. P. G. Sokolove, “Localization of the cockroach optic lobe circadian pacemaker with microlesions,” Brain Research, vol. 87, no. 1, pp. 13–21, 1975. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. Lucas, G. S. Lall, A. E. Allen, and T. M. Brown, “How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock,” Progress in Brain Research, vol. 199, pp. 1–18, 2012. View at Google Scholar
  6. S. M. Reppert and D. R. Weaver, “Coordination of circadian timing in mammals,” Nature, vol. 418, no. 6901, pp. 935–941, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Okamura, “Clock genes in cell clocks: roles, actions, and mysteries,” Journal of Biological Rhythms, vol. 19, no. 5, pp. 388–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Guillaumond, H. Dardente, V. Giguère, and N. Cermakian, “Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors,” Journal of Biological Rhythms, vol. 20, no. 5, pp. 391–403, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Li and S. P. Hunger, “The DBP transcriptional activation domain is highly homologous to that of HLF and TEF and is not responsible for the tissue type-specific transcriptional activity of DBP,” Gene, vol. 263, no. 1-2, pp. 239–245, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Mitsui, S. Yamaguchi, T. Matsuo, Y. Ishida, and H. Okamura, “Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism,” Genes and Development, vol. 15, no. 8, pp. 995–1006, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. H. R. Ueda, S. Hayashi, W. Chen et al., “System-level identification of transcriptional circuits underlying mammalian circadian clocks,” Nature Genetics, vol. 37, no. 2, pp. 187–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Koike, S. H. Yoo, H. C. Huang et al., “Transcriptional architecture and chromatin landscape of the core circadian clock in mammals,” Science, vol. 338, no. 6105, pp. 349–354, 2012. View at Google Scholar
  13. D. P. Cardinali and P. Pévet, “Basic aspects of melatonin action,” Sleep Medicine Reviews, vol. 2, no. 3, pp. 175–190, 1998. View at Google Scholar
  14. J. I. Chuang, S. S. Chen, and M. T. Lin, “Melatonin decreases brain serotonin release, arterial pressure and heart rate in rats,” Pharmacology, vol. 47, no. 2, pp. 91–97, 1993. View at Google Scholar · View at Scopus
  15. S. S. Gilbert, C. J. Van Den Heuvel, and D. Dawson, “Daytime melatonin and temazepam in young adult humans: equivalent effects on sleep latency and body temperatures,” Journal of Physiology, vol. 514, no. 3, pp. 905–914, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Gibbs and D. W. Ray, “The role of the circadian clock in rheumatoid arthritis,” Arthritis Research & Therapy, vol. 15, no. 1, article 205, 2013. View at Google Scholar
  17. M. Cutolo, G. J. M. Maestroni, K. Otsa et al., “Circadian melatonin and cortisol levels in rheumatoid arthritis patients in winter time: a north and south Europe comparison,” Annals of the Rheumatic Diseases, vol. 64, no. 2, pp. 212–216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Afkhamizadeh, M. Sahebari, and S. R. Seyyed-Hoseini, “Morning melatonin serum values do not correlate with disease activity in rheumatoid arthritis: a cross-sectional study,” Rheumatology International, 2014. View at Publisher · View at Google Scholar
  19. M. Cutolo and G. J. M. Maestroni, “The melatonin-cytokine connection in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 64, no. 8, pp. 1109–1111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. S. Rudra, U. Pal, N. C. Maiti, R. J. Reiter, and S. Swarnakar, “Melatonin inhibits matrix metalloproteinase-9 activity by binding to its active site,” Journal of Pineal Research, vol. 54, no. 4, pp. 398–405, 2013. View at Google Scholar
  21. L. A. Toth, “Sleep, sleep deprivation and infectious disease: studies in animals,” Advances in Neuroimmunology, vol. 5, no. 1, pp. 79–92, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. K. L. Adams, O. Castanon-Cervantes, J. A. Evans, and A. J. Davidson, “Environmental circadian disruption elevates the IL-6 response to lipopolysaccharide in blood,” Journal of Biological Rhythms, vol. 28, no. 4, pp. 272–277, 2013. View at Google Scholar
  23. T. Lange, S. Dimitrov, and J. Born, “Effects of sleep and circadian rhythm on the human immune system: annals of the New York Academy of Sciences,” Annals of the New York Academy of Sciences, vol. 1193, pp. 48–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Cakirbay, M. Bilici, O. Kavakçi, A. Cebi, M. Güler, and U. Tan, “Sleep quality and immune functions in rheumatoid arthritis patients with and without major depression,” International Journal of Neuroscience, vol. 114, no. 2, pp. 245–256, 2004. View at Google Scholar
  25. R. M. Taylor-Gjevre, J. A. Gjevre, B. Nair, R. Skomro, and H. J. Lim, “Hypersomnolence and sleep disorders in a rheumatic disease patient population,” Journal of Clinical Rheumatology, vol. 16, no. 6, pp. 255–261, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. E. Goodchild, G. J. Treharne, D. A. Booth, and S. J. Bowman, “Daytime patterning of fatigue and its associations with the previous night's discomfort and poor sleep among women with primary Sjögren's syndrome or rheumatoid arthritis,” Musculoskeletal Care, vol. 8, no. 2, pp. 107–117, 2010. View at Google Scholar · View at Scopus
  27. R. Westhovens, K. Van der Elst, A. Matthys, M. Tran, and I. Gilloteau, “Sleep problems in patients with rheumatoid arthritis,” Journal of Rheumatology, vol. 41, no. 1, pp. 31–40, 2014. View at Google Scholar
  28. F. Wolfe, K. Michaud, and T. Li, “Sleep disturbance in patients with rheumatoid arthritis: evaluation by medical outcomes study and visual analog sleep scales,” Journal of Rheumatology, vol. 33, no. 10, pp. 1942–1951, 2006. View at Google Scholar · View at Scopus
  29. S. Puttonen, T. Oksanen, J. Vahtera et al., “Is shift work a risk factor for rheumatoid arthritis? The Finnish Public Sector study,” Annals of the Rheumatic Diseases, vol. 69, no. 4, pp. 779–780, 2010. View at Google Scholar · View at Scopus
  30. M. Keller, J. Mazuch, U. Abraham et al., “A circadian clock in macrophages controls inflammatory immune responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 50, pp. 21407–21412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. E. Gibbs, J. Blaikley, S. Beesley et al., “The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 2, pp. 582–587, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Sato, T. Sakurai, J. Ogasawara et al., “A circadian clock gene, Rev-erbα, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression,” Journal of Immunology, vol. 192, no. 1, pp. 407–417, 2014. View at Google Scholar
  33. M. T. Lam, H. Cho, H. P. Lesch et al., “Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription,” Nature, vol. 498, no. 7455, pp. 511–515, 2013. View at Google Scholar
  34. K. D. Nguyen, S. J. Fentress, Y. Qiu, K. Yun, J. S. Cox, and A. Chawla, “Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes,” Science, vol. 341, no. 6153, pp. 1483–1488, 2013. View at Google Scholar
  35. S. Kirsch, S. Thijssen, S. Alarcon Salvador et al., “T-cell numbers and antigen-specific T-cell function follow different circadian rhythms,” Journal of Clinical Immunology, vol. 32, no. 6, pp. 1381–1389, 2012. View at Google Scholar
  36. M. Cutolo and A. T. Masi, “Circadian rhythms and arthritis,” Rheumatic Disease Clinics of North America, vol. 31, no. 1, pp. 115–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Alten, “Chronotherapy with modified-release prednisone in patients with rheumatoid arthritis,” Expert Review of Clinical Immunology, vol. 8, no. 2, pp. 123–133, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Cutolo, “Chronobiology and the treatment of rheumatoid arthritis,” Current Opinion in Rheumatology, vol. 24, no. 3, pp. 312–318, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. M. C. Boissier, L. Semerano, S. Challal, N. Saidenberg-Kermanac'h, and G. Falgarone, “Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction,” Journal of Autoimmunity, vol. 39, no. 3, pp. 222–228, 2012. View at Google Scholar
  40. A. Hashiramoto, C. Sakai, K. Yoshida et al., “Angiopoietin 1 directly induces destruction of the rheumatoid joint by cooperative, but independent, signaling via ERK/MAPK and phosphatidylinositol 3-kinase/Akt,” Arthritis and Rheumatism, vol. 56, no. 7, pp. 2170–2179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Komatsu and H. Takayanagi, “Autoimmune arthritis: the interface between the immune system and joints,” Advances in Immunology, vol. 115, pp. 45–71, 2012. View at Google Scholar
  42. M. Hikasa, E. Yamamoto, H. Kawasaki et al., “p21waf1/cip1 is down-regulated in conjunction with up-regulation of c-Fos in the lymphocytes of rheumatoid arthritis patients,” Biochemical and Biophysical Research Communications, vol. 304, no. 1, pp. 143–147, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Kawasaki, K. Komai, M. Nakamura et al., “Human wee1 kinase is directly transactivated by and increased in association with c-Fos/AP-1: rheumatoid synovial cells overexpressing these genes go into aberrant mitosis,” Oncogene, vol. 22, no. 44, pp. 6839–6844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Shiozawa, Y. Tanaka, T. Fujita, and T. Tokuhisa, “Destructive arthritis without lymphocyte infiltration in H2-c-fos transgenic mice,” Journal of Immunology, vol. 148, no. 10, pp. 3100–3104, 1992. View at Google Scholar · View at Scopus
  45. T. Matsuo, S. Yamaguchi, S. Mitsui, A. Emi, F. Shimoda, and H. Okamura, “Control mechanism of the circadian clock for timing of cell division in vivo,” Science, vol. 302, no. 5643, pp. 255–259, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Hashiramoto, T. Yamane, K. Tsumiyama et al., “Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-α,” Journal of Immunology, vol. 184, no. 3, pp. 1560–1565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Narasimamurthy, M. Hatori, S. K. Nayak, F. Liu, S. Panda, and I. M. Verma, “Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 31, pp. 12662–12667, 2012. View at Google Scholar
  48. J. Bang, H. W. Chang, H.-R. Jung et al., “Melatonin attenuates clock gene cryptochrome1, which may aggravates mouse anti-type II collagen antibody-induced arthritis,” Rheumatology International, vol. 32, no. 2, pp. 379–385, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. V. P. Kouri, J. Olkkonen, E. Kaivosoja et al., “Circadian timekeeping is disturbed in rheumatoid arthritis at molecular level,” PLoS ONE, vol. 8, no. 1, Article ID e54049, 2013. View at Google Scholar
  50. G. Cavadini, S. Petrzilka, P. Kohler et al., “TNF-α suppresses the expression of clock genes by interfering with E-box-mediated transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 31, pp. 12843–12848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Petrzilka, C. Taraborrelli, G. Cavadini, A. Fontana, and T. Birchler, “Clock gene modulation by TNF-α depends on calcium and p38 MAP kinase signaling,” Journal of Biological Rhythms, vol. 24, no. 4, pp. 283–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Perez-Aso, J. L. Feig, A. Mediero, and B. N. Cronstein, “Adenosine A2A receptor and TNF-α regulate the circadian machinery of the human monocytic THP-1 cells,” Inflammation, vol. 36, no. 1, pp. 152–162, 2013. View at Google Scholar
  53. K. Yoshida, A. Hashiramoto, T. Okano, T. Yamane, N. Shibanuma, and S. Shiozawa, “TNF-α modulates expression of the circadian clock gene Per2 in rheumatoid synovial cells,” Scandinavian Journal of Rheumatology, vol. 42, no. 4, pp. 276–280, 2013. View at Google Scholar
  54. L. Fu, H. Pelicano, J. Liu, P. Huang, and C. C. Lee, “The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo,” Cell, vol. 111, no. 1, pp. 41–50, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Gossan, L. Zeef, J. Hensman et al., “The circadian clock in murine chondrocytes regulates genes controlling key aspects of cartilage homeostasis,” Arthritis & Rheumatology, vol. 65, no. 9, pp. 2334–2345, 2013. View at Google Scholar
  56. N. Okubo, Y. Minami, H. Fujiwara et al., “Prolonged bioluminescence monitoring in mouse ex vivo bone culture revealed persistent circadian rhythms in articular cartilages and growth plates,” PLoS ONE, vol. 8, no. 11, Article ID e78306, 2013. View at Google Scholar