Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2014 (2014), Article ID 326545, 16 pages
http://dx.doi.org/10.1155/2014/326545
Review Article

A New Hope in Immunotherapy for Malignant Gliomas: Adoptive T Cell Transfer Therapy

1Department of Neurosurgery, Incheon St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Dongsuro 56, Bupyeong-gu, Incheon 403-720, Republic of Korea
2Department of Neurosurgery, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Banpodaero 222, Seocho-gu, Seoul 137-701, Republic of Korea

Received 14 February 2014; Revised 2 May 2014; Accepted 18 May 2014; Published 9 June 2014

Academic Editor: Bin Zhang

Copyright © 2014 Dong-Sup Chung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Han, C. Zygourakis, M. Lim, and A. T. Parsa, “Immunotherapy for Glioma. Promises and challenges,” Neurosurgery Clinics of North America, vol. 23, no. 3, pp. 357–370, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. P.-Y. Dietrich, V. Dutoit, N. N. T. Thang, and P. R. Walker, “T-cell immunotherapy for malignant glioma: toward a combined approach,” Current Opinion in Oncology, vol. 22, no. 6, pp. 604–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. A. Mitchell, P. E. Fecci, and J. H. Sampson, “Adoptive immunotherapy for malignant glioma,” Cancer Journal, vol. 9, no. 3, pp. 157–166, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. D. B. Paul and C. A. Kruse, “Immunologic approaches to therapy for brain tumors,” Current Neurology and Neuroscience Reports, vol. 1, no. 3, pp. 238–244, 2001. View at Google Scholar · View at Scopus
  5. V. Schirrmacher, H.-J. Schild, B. Guckel, and P. Von Hoegen, “Tumour-specific CTL response requiring interactions of four different cell types and recognition of MHC class I and class II restricted tumour antigens,” Immunology and Cell Biology, vol. 71, pp. 311–326, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. A. F. Ochsenbein, P. Klenerman, U. Karrer et al., “Immune surveillance against a solid tumor fails because of immunological ignorance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 2233–2238, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Parmiani, “Tumor immunity as autoimmunity: tumor antigens include normal self proteins which stimulate anergic peripheral T cells,” Immunology Today, vol. 14, no. 11, pp. 536–538, 1993. View at Google Scholar · View at Scopus
  8. D. E. Speiser, R. Miranda, A. Zakarian et al., “Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: implications for immunotherapy,” The Journal of Experimental Medicine, vol. 186, no. 5, pp. 645–653, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Leen, C. M. Rooney, and A. E. Foster, “Improving T cell therapy for cancer,” Annual Review of Immunology, vol. 25, pp. 243–265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. L. M. Liau, R. M. Prins, S. M. Kiertscher et al., “Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment,” Clinical Cancer Research, vol. 11, no. 15, pp. 5515–5525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Okada, F. S. Lieberman, K. A. Walter et al., “Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas,” Journal of Translational Medicine, vol. 5, article 67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Phuphanich, C. J. Wheeler, J. D. Rudnick et al., “Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma,” Cancer Immunology, Immunotherapy, vol. 62, no. 1, pp. 125–135, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. C. J. Wheeler, K. L. Black, G. Liu et al., “Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients,” Cancer Research, vol. 68, no. 14, pp. 5955–5964, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Cavalieri, S. Cazzaniga, M. Geuna et al., “Human T lymphocytes transduced by lentiviral vectors in the absence of TCR activation maintain an intact immune competence,” Blood, vol. 102, no. 2, pp. 497–505, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. O. J. Finn, D. A. Persons, K. M. Bendt, L. Pirami, and P. Ricciardi, “Retroviral transduction of protein kinase C-γ into cytotoxic T lymphocyte clones leads to immortalization with retention of specific function,” The Journal of Immunology, vol. 146, no. 4, pp. 1099–1103, 1991. View at Google Scholar · View at Scopus
  16. R. A. Morgan, M. E. Dudley, J. R. Wunderlich et al., “Cancer regression in patients after transfer of genetically engineered lymphocytes,” Science, vol. 314, no. 5796, pp. 126–129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. L. A. Johnson, R. A. Morgan, M. E. Dudley et al., “Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen,” Blood, vol. 114, no. 3, pp. 535–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Eshhar, T. Waks, G. Gross, and D. G. Schindler, “Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 2, pp. 720–724, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. S. S. Bullain, A. Sahin, O. Szentirmai et al., “Genetically engineered T cells to target EGFRvIII expressing glioblastoma,” Journal of Neuro-Oncology, vol. 94, no. 3, pp. 373–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Ahmed, V. S. Salsman, Y. Kew et al., “HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors,” Clinical Cancer Research, vol. 16, no. 2, pp. 474–485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. K. Chow, S. Naik, S. Kakarla et al., “T cells redirected to EphA2 for the immunotherapy of glioblastoma,” Molecular Therapy, vol. 21, no. 3, pp. 629–637, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. K. S. Kahlon, C. Brown, L. J. N. Cooper, A. Raubitschek, S. J. Forman, and M. C. Jensen, “Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells,” Cancer Research, vol. 64, no. 24, pp. 9160–9166, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D.-G. Song, Q. Ye, C. Carpenito et al., “In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB),” Cancer Research, vol. 71, no. 13, pp. 4617–4627, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. C. M. Kowolik, M. S. Topp, S. Gonzalez et al., “CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells,” Cancer Research, vol. 66, no. 22, pp. 10995–11004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. A. Hombach and H. Abken, “Costimulation by chimeric antigen receptors revisited the T cell antitumor response benefits from combined CD28-OX40 signalling,” International Journal of Cancer, vol. 129, no. 12, pp. 2935–2944, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. T.-G. Kim, C.-H. Kim, J.-S. Park et al., “Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model,” Clinical and Vaccine Immunology, vol. 17, no. 1, pp. 143–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. E. Fadul, J. L. Fisher, T. H. Hampton et al., “Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy,” Journal of Immunotherapy, vol. 34, no. 4, pp. 382–389, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. P. B. MEDAWAR, “Immunity to homologous grafted skin; the fate of skin homografts,” British Journal of Experimental Pathology, vol. 29, no. 1, pp. 58–69, 1948. View at Google Scholar · View at Scopus
  29. M. Poltorak, S. Logan, and W. J. Freed, “Intraventricular xenografts: chronic injection of antibodies into the CSF provokes granulomatosis reactions but Ia antibodies do not enhance graft survival,” Regional Immunology, vol. 2, no. 4, pp. 197–202, 1989. View at Google Scholar · View at Scopus
  30. P. A. Ludowyk, D. O. Willenborg, and C. R. Parish, “Selective localisation of neuro-specific T lymphocytes in the central nervous system,” Journal of Neuroimmunology, vol. 37, no. 3, pp. 237–250, 1992. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Wekerle, D. Sun, R. L. Oropeza-Wekerle, and R. Meyermann, “Immune reactivity in the nervous system: modulation of T-lymphocyte activation by glial cells,” The Journal of Experimental Biology, vol. 132, pp. 43–57, 1987. View at Google Scholar · View at Scopus
  32. H. F. Cserr, C. J. Harling-Berg, and P. M. Knopf, “Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance,” Brain Pathology, vol. 2, no. 4, pp. 269–276, 1992. View at Google Scholar · View at Scopus
  33. I. F. Parney, “Basic concepts in glioma immunology,” Advances in Experimental Medicine and Biology, vol. 746, pp. 42–52, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Yang, S. J. Han, G. Kaur, C. Crane, and A. T. Parsa, “The role of microglia in central nervous system immunity and glioma immunology,” Journal of Clinical Neuroscience, vol. 17, no. 1, pp. 6–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A.-H. Wu, J. Xiao, L. Anker et al., “Identification of EGFRvIII-derived CTL epitopes estricted by HLA A0201 for dendritic cell based immunotherapy of gliomas,” Journal of Neuro-Oncology, vol. 76, no. 1, pp. 23–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Sasaki, K. Nakahira, Y. Kawano et al., “MAGE-E1, a new member of the melanoma-associated antigen gene family and its expression in human glioma,” Cancer Research, vol. 61, no. 12, pp. 4809–4814, 2001. View at Google Scholar · View at Scopus
  37. D. L. Scarcella, C. W. Chow, M. F. Gonzales, C. Economou, F. Brasseur, and D. M. Ashley, “Expression of MAGE and GAGE in high-grade brain tumors: a potential target for specific immunotherapy and diagnostic markers,” Clinical Cancer Research, vol. 5, no. 2, pp. 335–341, 1999. View at Google Scholar · View at Scopus
  38. R. Ueda, Y. Iizuka, K. Yoshida, T. Kawase, Y. Kawakami, and M. Toda, “Identification of a human glioma antigen, SOX6, recognized by patients' sera,” Oncogene, vol. 23, no. 7, pp. 1420–1427, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Liu, H. Ying, G. Zeng, C. J. Wheeler, K. L. Black, and J. S. Yu, “HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells,” Cancer Research, vol. 64, no. 14, pp. 4980–4986, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Liu, H. T. Khong, C. J. Wheeler, J. S. Yu, K. L. Black, and H. Ying, “Molecular and functional analysis of tyrosinase-related protein (TRP)-2 as a cytotoxic T lymphocyte target in patients with malignant glioma,” Journal of Immunotherapy, vol. 26, no. 4, pp. 301–312, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Wykosky, D. M. Gibo, C. Stanton, and W. Debinski, “Interleukin-13 receptor α2, EphA2, and Fos-related antigen 1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy,” Clinical Cancer Research, vol. 14, no. 1, pp. 199–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Hatano, J. Eguchi, T. Tatsumi et al., “EphA2 as a glioma-associated antigen: a novel target for glioma vaccines,” Neoplasia, vol. 7, no. 8, pp. 717–722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Jin, Y. Komohara, S. Shichijo et al., “Identification of EphB6 variant-derived epitope peptides recognized by cytotoxic T-lymphocytes from HLA-A24+ malignant glioma patients,” Oncology Reports, vol. 19, no. 5, pp. 1277–1283, 2008. View at Google Scholar · View at Scopus
  44. G. Liu, J. S. Yu, G. Zeng et al., “AIM-2: a novel tumor antigen is expressed and presented by human glioma cells,” Journal of Immunotherapy, vol. 27, no. 3, pp. 220–226, 2004. View at Google Scholar · View at Scopus
  45. M. Schmitz, R. Wehner, S. Stevanovic et al., “Identification of a naturally processed T cell epitope derived from the glioma-associated protein SOX11,” Cancer Letters, vol. 245, no. 1-2, pp. 331–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. H.-I. Cho, E.-K. Kim, S.-Y. Park, S. K. Lee, Y.-K. Hong, and T.-G. Kim, “Enhanced induction of anti-tumor immunity in human and mouse by dendritic cells pulsed with recombinant TAT fused human survivin protein,” Cancer Letters, vol. 258, no. 2, pp. 189–198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Komata, T. Kanzawa, Y. Kondo, and S. Kondo, “Telomerase as a therapeutic target for malignant gliomas,” Oncogene, vol. 21, no. 4, pp. 656–663, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Z. Jian, J. Eguchi, C. A. Kruse et al., “Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics,” Clinical Cancer Research, vol. 13, no. 2, part 1, pp. 566–575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Harada, Y. Ishihara, K. Itoh, and R. Yamanaka, “Kinesin superfamily protein-derived peptides with the ability to induce glioma-reactive cytotoxic T lymphocytes in human leukocyte antigen-A24 + glioma patients,” Oncology Reports, vol. 17, no. 3, pp. 629–636, 2007. View at Google Scholar · View at Scopus
  50. M. S. Mahaley Jr., D. D. Bigner, L. F. Dudka et al., “Immunobiology of primary intracranial tumors. Part 7: active immunization of patients with anaplastic human glioma cells: a pilot study,” Journal of Neurosurgery, vol. 59, no. 2, pp. 201–207, 1983. View at Google Scholar · View at Scopus
  51. S. Kong, S. Sengupta, B. Tyler et al., “Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor-modified T cells,” Clinical Cancer Research, vol. 18, no. 21, pp. 5949–5960, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. S. F. Hussain, D. Yang, D. Suki, K. Aldape, E. Grimm, and A. B. Heimberger, “The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses,” Neuro-Oncology, vol. 8, no. 3, pp. 261–279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. F. P. Holladay, “Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/IV astrocytoma,” Journal of Neuro-Oncology, vol. 27, no. 2, pp. 179–189, 1996. View at Google Scholar · View at Scopus
  54. M. Platten, A. Kretz, U. Naumann et al., “Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas,” Annals of Neurology, vol. 54, no. 3, pp. 388–392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Okada, M. Saio, Y. Kito et al., “Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1,” International Journal of Oncology, vol. 34, no. 6, pp. 1621–1627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. K. B. Quattrocchi, C. H. Miller, S. Cush et al., “Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas,” Journal of Neuro-Oncology, vol. 45, no. 2, pp. 141–157, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Kitahara, O. Watanabe, A. Yamaura et al., “Establishment of interleukin 2 dependent cytotoxic T lymphocyte cell line specific for autologous brain tumor and its intracranial administration for therapy of the tumor,” Journal of Neuro-Oncology, vol. 4, no. 4, pp. 329–336, 1987. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Tsuboi, K. Saijo, E. Ishikawa et al., “Effects of local injection of ex vivo expanded autologous tumor-specific T lymphocytes in cases with recurrent malignant gliomas,” Clinical Cancer Research, vol. 9, no. 9, pp. 3294–3302, 2003. View at Google Scholar · View at Scopus
  59. C. A. Kruse, L. Cepeda, B. Owens, S. D. Johnson, J. Stears, and K. O. Lillehei, “Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T lymphocytes and interleukin-2,” Cancer Immunology Immunotherapy, vol. 45, no. 2, pp. 77–87, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. R. O. Dillman, C. M. Duma, R. A. Ellis et al., “Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma,” Journal of Immunotherapy, vol. 32, no. 9, pp. 914–919, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. R. O. Dillman, C. M. Duma, P. M. Schiltz et al., “Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma,” Journal of Immunotherapy, vol. 27, no. 5, pp. 398–404, 2004. View at Google Scholar · View at Scopus
  62. S. K. Sankhla, J. S. Nadkarni, and S. N. Bhagwati, “Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors,” Journal of Neuro-Oncology, vol. 27, no. 2, pp. 133–140, 1996. View at Google Scholar · View at Scopus
  63. R. L. Hayes, M. Koslow, E. M. Hiesiger et al., “Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma,” Cancer, vol. 76, no. 5, pp. 840–852, 1995. View at Google Scholar
  64. K. O. Lillehei, D. H. Mitchell, S. D. Johnson, E. L. McCleary, and C. A. Kruse, “Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy,” Neurosurgery, vol. 28, no. 1, pp. 16–23, 1991. View at Google Scholar · View at Scopus
  65. D. Barba, S. C. Saris, C. Holder, S. A. Rosenberg, and E. H. Oldfield, “Intratumoral LAK cell and interleukin-2 therapy of human gliomas,” Journal of Neurosurgery, vol. 70, no. 2, pp. 175–182, 1989. View at Google Scholar · View at Scopus
  66. R. E. Merchant, L. H. Merchant, S. H. S. Cook, D. W. McVicar, H. F. Young, and M. S. Mahaley Jr., “Intralesional infusion of lymphokine-activated killer (LAK) cells and recombinant Interleukin-2 (rIL-2) for the treatment of patients with malignant brain tumor,” Neurosurgery, vol. 23, no. 6, pp. 725–732, 1988. View at Google Scholar · View at Scopus
  67. S. Yoshida, R. Tanaka, N. Takai, and K. Ono, “Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors,” Cancer Research, vol. 48, no. 17, pp. 5011–5016, 1988. View at Google Scholar · View at Scopus
  68. R. E. Merchant, A. J. Grant, L. H. Merchant, and H. F. Young, “Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2,” Cancer, vol. 62, no. 4, pp. 665–671, 1988. View at Google Scholar · View at Scopus
  69. S. K. Jacobs, D. J. Wilson, P. L. Kornblith, and E. A. Grimm, “Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial,” Cancer Research, vol. 46, no. 4, part 2, pp. 2101–2104, 1986. View at Google Scholar · View at Scopus
  70. A. Blancher, F. Roubinet, A. S. Grancher et al., “Local immunotherapy of recurrent glioblastoma multiforme by intracerebral perfusion of interleukin-2 and LAK cells,” European Cytokine Network, vol. 4, no. 5, pp. 331–341, 1993. View at Google Scholar · View at Scopus
  71. T. M. Law, R. J. Motzer, M. Mazumdar et al., “Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma,” Cancer, vol. 76, no. 5, pp. 824–832, 1995. View at Google Scholar
  72. M. Bonneville and E. Scotet, “Human Vγ9Vδ2 T cells: promising new leads for immunotherapy of infections and tumors,” Current Opinion in Immunology, vol. 18, no. 5, pp. 539–546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Borghaei, M. R. Smith, and K. S. Campbell, “Immunotherapy of cancer,” European Journal of Pharmacology, vol. 625, no. 1–3, pp. 41–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Srivastava, A. Lundqvist, and R. W. Childs, “Natural killer cell immunotherapy for cancer: a new hope,” Cytotherapy, vol. 10, no. 8, pp. 775–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. E. Vivier, E. Tomasello, M. Baratin, T. Walzer, and S. Ugolini, “Functions of natural killer cells,” Nature Immunology, vol. 9, no. 5, pp. 503–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. R. Castriconi, A. Daga, A. Dondero et al., “NK cells recognize and kill human glioblastoma cells with stem cell-like properties,” The Journal of Immunology, vol. 182, no. 6, pp. 3530–3539, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. D. Alizadeh, L. Zhang, C. E. Brown, O. Farrukh, M. C. Jensen, and B. Badie, “Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy,” Clinical Cancer Research, vol. 16, no. 13, pp. 3399–3408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Ishikawa, K. Tsuboi, S. Takano, E. Uchimura, T. Nose, and T. Ohno, “Intratumoral injection of IL-2-activated NK cells enhances the antitumor effect of intradermally injected paraformaldehyde-fixed tumor vaccine in a rat intracranial brain tumor model,” Cancer Science, vol. 95, no. 1, pp. 98–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Wang, J.-P. Yu, S.-Y. Gao et al., “Experimental study on the treatment of intracerebral glioma xenograft with human cytokine-induced killer cells,” Cellular Immunology, vol. 253, no. 1-2, pp. 59–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Ishikawa, K. Tsuboi, K. Saijo et al., “Autologous natural killer cell therapy for human recurrent malignant glioma,” Anticancer Research, vol. 24, no. 3 B, pp. 1861–1871, 2004. View at Google Scholar · View at Scopus
  81. S. Pellegatta, M. Eoli, S. Frigerio et al., “The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates,” Oncoimmunology, vol. 2, no. 3, Article ID e23401, 2013. View at Google Scholar
  82. L. Moretta, C. Bottino, D. Pende, R. Castriconi, M. C. Mingari, and A. Moretta, “Surface NK receptors and their ligands on tumor cells,” Seminars in Immunology, vol. 18, no. 3, pp. 151–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. B. H. Bakker, J. H. Phillips, C. G. Figdor, and L. L. Lanier, “Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, γδ T cells, and antigen- specific CTL,” The Journal of Immunology, vol. 160, no. 11, pp. 5239–5245, 1998. View at Google Scholar · View at Scopus
  84. H. Fujisaki, H. Kakuda, N. Shimasaki et al., “Expansion of highly cytotoxic human natural killer cells for cancer cell therapy,” Cancer Research, vol. 69, no. 9, pp. 4010–4017, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Cheng, Y. Chen, W. Xiao, R. Sun, and Z. Tian, “NK cell-based immunotherapy for malignant diseases,” Cellular and Molecular Immunology, vol. 10, no. 3, pp. 230–252, 2013. View at Publisher · View at Google Scholar · View at Scopus
  86. H. J. Pegram, M. H. Kershaw, and P. K. Darcy, “Genetic modification of natural killer cells for adoptive cellular immunotherapy,” Immunotherapy, vol. 1, no. 4, pp. 623–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Nagashima, R. Mailliard, Y. Kashii et al., “Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo,” Blood, vol. 91, no. 10, pp. 3850–3861, 1998. View at Google Scholar · View at Scopus
  88. S. R. Goding, Q. Yang, K. B. Knudsen, D. M. Potter, and P. H. Basse, “Cytokine gene therapy using adenovirally transduced, tumor-seeking activated natural killer cells,” Human Gene Therapy, vol. 18, no. 8, pp. 701–711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. N. L. Vujanovic, S. Yasumura, H. Hirabayashi et al., “Antitumor activities of subsets of human IL-2-activated natural killer cells in solid tissues,” The Journal of Immunology, vol. 154, no. 1, pp. 281–289, 1995. View at Google Scholar · View at Scopus
  90. J. S. Miller, J. Tessmer-Tuck, N. Blake et al., “Endogenous IL-2 production by natural killer cells maintains cytotoxic and proliferative capacity following retroviral-mediated gene transfer,” Experimental Hematology, vol. 25, no. 11, pp. 1140–1148, 1997. View at Google Scholar · View at Scopus
  91. J. Zhang, R. Sun, H. Wei, J. Zhang, and Z. Tian, “Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy,” Haematologica, vol. 89, no. 3, pp. 338–347, 2004. View at Google Scholar · View at Scopus
  92. C. Sahm, K. Schönfeld, and W. S. Wels, “Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modiWed eVectors that carry a tumor-speciWc antigen receptor,” Cancer Immunology, Immunotherapy, vol. 61, no. 9, pp. 1451–1461, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. W. Jiang, J. Zhang, and Z. Tian, “Functional characterization of interleukin-15 gene transduction into the human natural killer cell line NKL,” Cytotherapy, vol. 10, no. 3, pp. 265–274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Zhang, R. Sun, H. Wei, J. Zhang, and Z. Tian, “Characterization of stem cell factor gene-modified human natural killer cell line, NK-92 cells: implication in NK cell-based adoptive cellular immunotherapy,” Oncology Reports, vol. 11, no. 5, pp. 1097–1106, 2004. View at Google Scholar · View at Scopus
  95. F. J. Demirtzoglou, S. Papadopoulos, and G. Zografos, “Cytolytic and cytotoxic activity of a human natural killer cell line genetically modified to specifically recognize HER-2/neu overexpressing tumor cells,” Immunopharmacology and Immunotoxicology, vol. 28, no. 4, pp. 571–590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. T. Schirrmann and G. Pecher, “Human natural killer cell line modified with a chimeric immunoglobulin T-cell receptor gene leads to tumor growth inhibition in vivo,” Cancer Gene Therapy, vol. 9, no. 4, pp. 390–398, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Schirrmann and G. Pecher, “Specific targeting of CD33+ leukemia cells by a natural killer cell line modified with a chimeric receptor,” Leukemia Research, vol. 29, no. 3, pp. 301–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. V. Bronte, M. Wang, W. W. Overwijk et al., “Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells,” The Journal of Immunology, vol. 161, no. 10, pp. 5313–5320, 1998. View at Google Scholar · View at Scopus
  99. V. Bronte, E. Apolloni, A. Cabrelle et al., “Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells,” Blood, vol. 96, no. 12, pp. 3838–3846, 2000. View at Google Scholar · View at Scopus
  100. D. Lindau, P. Gielen, M. Kroesen, P. Wesseling, and G. J. Adema, “The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells,” Immunology, vol. 138, no. 2, pp. 105–115, 2013. View at Publisher · View at Google Scholar · View at Scopus
  101. B. Zhang, H. Jia, J. Liu et al., “Depletion of regulatory T cells facilitates growth of established tumors: a mechanism involving the regulation of myeloid-derived suppressor cells by lipoxin A4,” The Journal of Immunology, vol. 185, no. 12, pp. 7199–7206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. T. Fujimura, Y. Kambayashi, and S. Aiba, “Crosstalk between regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) during melanoma growth,” Oncoimmunology, vol. 1, no. 8, pp. 1433–1434, 2012. View at Google Scholar
  103. B. Raychaudhuri, P. R. J. Ireland, J. Ko et al., “Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma,” Neuro-Oncology, vol. 13, no. 6, pp. 591–599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. J. C. Rodrigues, G. C. Gonzalez, L. Zhang et al., “Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties,” Neuro-Oncology, vol. 12, no. 4, pp. 351–365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Fujita, G. Kohanbash, W. Fellows-Mayle et al., “COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells,” Cancer Research, vol. 71, no. 7, pp. 2664–2674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. X. Zhu, M. Fujita, L. A. Snyder, and H. Okada, “Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy,” Journal of Neuro-Oncology, vol. 104, no. 1, pp. 83–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. A. M. Sonabend, C. E. Rolle, and M. S. Lesniak, “The role of regulatory T cells in malignant glioma,” Anticancer Research, vol. 28, no. 2, pp. 1143–1150, 2008. View at Google Scholar · View at Scopus
  108. M. J. Smyth, M. W. L. Teng, J. Swann, K. Kyparissoudis, D. I. Godfrey, and Y. Hayakawa, “CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer,” The Journal of Immunology, vol. 176, no. 3, pp. 1582–1587, 2006. View at Google Scholar · View at Scopus
  109. H. Zhou, L. Chen, Y. You, L. Zou, and P. Zou, “Foxp3-transduced polyclonal regulatory T cells suppress NK cell functions in a TGF-β dependent manner,” Autoimmunity, vol. 43, no. 4, pp. 299–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. L. S. Lamb Jr., “γδ T cells as immune effectors against high-grade gliomas,” Immunologic Research, vol. 45, no. 1, pp. 85–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. T. Yamaguchi, Y. Fujimiya, Y. Suzuki, R. Katakura, and T. Ebina, “A simple method for the propagation and purification of γδT cells from the peripheral blood of glioblastoma patients using solid-phase anti-CD3 antibody and soluble IL-2,” Journal of Immunological Methods, vol. 205, no. 1, pp. 19–28, 1997. View at Publisher · View at Google Scholar · View at Scopus
  112. Y. Fujimiya, Y. Suzuki, R. Katakura et al., “In vitro interleukin 12 activation of peripheral blood CD3+ CD56+ and CD3+ CD56- γδ T cells from glioblastoma patients,” Clinical Cancer Research, vol. 3, no. 4, pp. 633–643, 1997. View at Google Scholar · View at Scopus
  113. T. Yamaguchi, Y. Suzuki, R. Katakura, T. Ebina, J. Yokoyama, and Y. Fujimiya, “Interleukin-15 effectively potentiates the in vitro tumor-specific activity and proliferation of peripheral blood γδT cells isolated from glioblastoma patients,” Cancer Immunology Immunotherapy, vol. 47, no. 2, pp. 97–103, 1998. View at Publisher · View at Google Scholar · View at Scopus
  114. N. L. Bryant, G. Y. Gillespie, R. D. Lopez et al., “Preclinical evaluation of ex vivo expanded/activated γδ T cells for immunotherapy of glioblastoma multiforme,” Journal of Neuro-Oncology, vol. 101, no. 2, pp. 179–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. N. L. Bryant, C. Suarez-Cuervo, G. Y. Gillespie et al., “Characterization and immunotherapeutic potential of γδ T-cells in patients with glioblastoma,” Neuro-Oncology, vol. 11, no. 4, pp. 357–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. L. S. Lamb Jr., J. Bowersock, A. Dasgupta et al., “Engineered drug resistant γδ T cells kill glioblastoma cell lines during a chemotherapy challenge: a strategy for combining chemo- and immunotherapy,” PLoS ONE, vol. 8, no. 1, Article ID e51805, 2013. View at Publisher · View at Google Scholar · View at Scopus
  117. P. M. Schlitz, L. D. Beutel, S. K. Nayak, and R. O. Dillman, “Characterization of tumor-infiltrating lymphocytes derived from human tumors for use as adoptive immunotherapy of cancer,” Journal of Immunotherapy, vol. 20, no. 5, pp. 377–386, 1997. View at Google Scholar · View at Scopus
  118. M. E. Dudley, J. R. Wunderlich, P. F. Robbins et al., “Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes,” Science, vol. 298, no. 5594, pp. 850–854, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. M. E. Dudley, J. C. Yang, R. Sherry et al., “Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens,” Journal of Clinical Oncology, vol. 26, no. 32, pp. 5233–5239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. C. M. Balch, L. B. Riley, Y. J. Bae et al., “Patterns of human tumor-infiltrating lymphocytes in 120 human cancers,” Archives of Surgery, vol. 125, no. 2, pp. 200–205, 1990. View at Google Scholar · View at Scopus
  121. H. Tsurushima, S. Q. Liu, K. Tuboi et al., “Reduction of end-stage malignant glioma by injection with autologous cytotoxic T lymphocytes,” Japanese Journal of Cancer Research, vol. 90, no. 5, pp. 536–545, 1999. View at Google Scholar · View at Scopus
  122. G. E. Plautz, D. W. Miller, G. H. Barnett et al., “T cell adoptive immunotherapy of newly diagnosed gliomas,” Clinical Cancer Research, vol. 6, no. 6, pp. 2209–2218, 2000. View at Google Scholar · View at Scopus
  123. G. E. Plautz, G. H. Barnett, D. W. Miller et al., “Systemic T cell adoptive immunotherapy of malignant gliomas,” Journal of Neurosurgery, vol. 89, no. 1, pp. 42–51, 1998. View at Google Scholar · View at Scopus
  124. G. W. Wood, F. P. Holladay, T. Turner, Y.-Y. Wang, and M. Chiga, “A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma,” Journal of Neuro-Oncology, vol. 48, no. 2, pp. 113–120, 2000. View at Publisher · View at Google Scholar · View at Scopus
  125. A. E. Sloan, R. Dansey, L. Zamorano et al., “Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes,” Neurosurgical Focus, vol. 9, no. 6, p. e9, 2000. View at Google Scholar · View at Scopus
  126. S. Ostrand-Rosenberg, “CD4+ T lymphocytes: a critical component of antitumor immunity,” Cancer Investigation, vol. 23, no. 5, pp. 413–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. D. M. Pardoll and S. L. Topalian, “The role of CD4+ T cell responses in antitumor immunity,” Current Opinion in Immunology, vol. 10, no. 5, pp. 588–594, 1998. View at Publisher · View at Google Scholar · View at Scopus
  128. N. N. Hunder, H. Wallen, J. Cao et al., “Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1,” The New England Journal of Medicine, vol. 358, no. 25, pp. 2698–2703, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. F. R. Depontieu, J. Qian, A. L. Zarling et al., “Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 29, pp. 12073–12078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Perez-Diez, N. T. Joncker, K. Choi et al., “CD4 cells can be more efficient at tumor rejection than CD8 cells,” Blood, vol. 109, no. 12, pp. 5346–5354, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. F. Ossendorp, E. Mengedé, M. Camps, R. Filius, and C. J. M. Melief, “Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors,” The Journal of Experimental Medicine, vol. 187, no. 5, pp. 693–702, 1998. View at Publisher · View at Google Scholar · View at Scopus
  132. Y. Xie, A. Akpinarli, C. Maris et al., “Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma,” The Journal of Experimental Medicine, vol. 207, no. 3, pp. 651–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. S. A. Quezada, T. R. Simpson, K. S. Peggs et al., “Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts,” The Journal of Experimental Medicine, vol. 207, no. 3, pp. 637–650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. J. Xiang and T. Moyana, “Cytotoxic CD4+ T cells associated with the expression of major histocompatibility complex class II antigen of mouse myeloma cells secreting interferon-γ are cytolytic in vitro and tumoricidal in vivo,” Cancer Gene Therapy, vol. 5, no. 5, pp. 313–320, 1998. View at Google Scholar · View at Scopus
  135. F. S. Hodi and D. E. Fisher, “Adoptive transfer of antigen-specific CD4+ T cells in the treatment of metastatic melanoma,” Nature Clinical Practice Oncology, vol. 5, no. 12, pp. 696–697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. Z. Dembic, W. Haas, S. Weiss et al., “Transfer of specificity by murine α and β T-cell receptor genes,” Nature, vol. 320, no. 6059, pp. 232–238, 1986. View at Google Scholar · View at Scopus
  137. M. T. Stephan, V. Ponomarev, R. J. Brentjens et al., “T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection,” Nature Medicine, vol. 13, no. 12, pp. 1440–1449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. K. Liu and S. A. Rosenberg, “Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity,” The Journal of Immunology, vol. 167, no. 11, pp. 6356–6365, 2001. View at Google Scholar · View at Scopus
  139. C. Hsu, M. S. Hughes, Z. Zheng, R. B. Bray, S. A. Rosenberg, and R. A. Morgan, “Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine,” The Journal of Immunology, vol. 175, no. 11, pp. 7226–7234, 2005. View at Google Scholar · View at Scopus
  140. J. F. Vera, V. Hoyos, B. Savoldo et al., “Genetic manipulation of tumor-specific cytotoxic T lymphocytes to restore responsiveness to IL-7,” Molecular Therapy, vol. 17, no. 5, pp. 880–888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. S. P. Kerkar, P. Muranski, A. Kaiser et al., “Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts,” Cancer Research, vol. 70, no. 17, pp. 6725–6734, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Kalbasi, R. K. Shrimali, D. Chinnasamy, and S. A. Rosenberg, “Prevention of interleukin-2 withdrawal-induced apoptosis in lymphocytes retrovirally cotransduced with genes encoding an antitumor t-cell receptor and an antiapoptotic protein,” Journal of Immunotherapy, vol. 33, no. 7, pp. 672–683, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. D. Eaton, D. E. Gilham, A. O'Neill, and R. E. Hawkins, “Retroviral transduction of human peripheral blood lymphocytes with bcl-XL promotes in vitro lymphocyte survival in pro-apoptotic conditions,” Gene Therapy, vol. 9, no. 8, pp. 527–535, 2002. View at Publisher · View at Google Scholar · View at Scopus
  144. J. Charo, S. E. Finkelstein, N. Grewal, N. P. Restifo, P. F. Robbins, and S. A. Rosenberg, “Bcl-2 overexpression enhances tumor-specific T-cell survival,” Cancer Research, vol. 65, no. 5, pp. 2001–2008, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. E. Mizukoshi, Y. Nakamoto, Y. Marukawa et al., “Cytotoxic T cell responses to human telomerase reverse transcriptase in patients with hepatocellular carcinoma,” Hepatology, vol. 43, no. 6, pp. 1284–1294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. X. Shen, J. Zhou, K. S. Hathcock et al., “Persistence of tumor infiltrating lymphocytes in adoptive immunotherapy correlates with telomere length,” Journal of Immunotherapy, vol. 30, no. 1, pp. 123–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Migliaccio, M. Amacker, T. Just et al., “Ectopic human telomerase catalytic subunit expression maintains telomere length but is not sufficient for CD8+ T lymphocyte immortalization,” The Journal of Immunology, vol. 165, no. 9, pp. 4978–4984, 2000. View at Google Scholar · View at Scopus
  148. E. Hooijberg, J. J. Ruizendaal, P. J. F. Snijders, E. W. M. Kueter, J. M. M. Walboomers, and H. Spits, “Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase,” The Journal of Immunology, vol. 165, no. 8, pp. 4239–4245, 2000. View at Google Scholar · View at Scopus
  149. S. Sapoznik, R. Ortenberg, G. Galore-Haskel et al., “CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy,” Cancer Immunology, Immunotherapy, vol. 61, no. 10, pp. 1833–1847, 2012. View at Publisher · View at Google Scholar · View at Scopus
  150. W. Peng, Y. Ye, B. A. Rabinovich et al., “Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses,” Clinical Cancer Research, vol. 16, no. 22, pp. 5458–5468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. J. A. Craddock, A. Lu, A. Bear et al., “Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b,” Journal of Immunotherapy, vol. 33, no. 8, pp. 780–788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. M. H. Kershaw, P. Hwu, G. Wang et al., “Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2,” Human Gene Therapy, vol. 13, no. 16, pp. 1971–1980, 2002. View at Publisher · View at Google Scholar · View at Scopus
  153. L. Wang, W. Wen, J. Yuan et al., “Immunotherapy for human renal cell carcinoma by adoptive transfer of autologous transforming growth factor β-insensitive CD8+ T cells,” Clinical Cancer Research, vol. 16, no. 1, pp. 164–173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. Q. Zhang, X. Yang, M. Pins et al., “Adoptive transfer of tumor-reactive transforming growth factor-β-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer,” Cancer Research, vol. 65, no. 5, pp. 1761–1769, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. C. M. Bollard, C. Rössig, M. Julia Calonge et al., “Adapting a transforming growth factor β-related tumor protection strategy to enhance antitumor immunity,” Blood, vol. 99, no. 9, pp. 3179–3187, 2002. View at Publisher · View at Google Scholar · View at Scopus
  156. A. E. Foster, G. Dotti, A. Lu et al., “Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-β receptor,” Journal of Immunotherapy, vol. 31, no. 5, pp. 500–505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. G. Dotti, B. Savoldo, M. Pule et al., “Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis,” Blood, vol. 105, no. 12, pp. 4677–4684, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. N. P. Restifo, M. E. Dudley, and S. A. Rosenberg, “Adoptive immunotherapy for cancer: harnessing the T cell response,” Nature Reviews Immunology, vol. 12, no. 4, pp. 269–281, 2012. View at Publisher · View at Google Scholar · View at Scopus
  159. N. M. Haynes, J. A. Trapani, M. W. L. Teng et al., “Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation,” The Journal of Immunology, vol. 169, no. 10, pp. 5780–5786, 2002. View at Google Scholar · View at Scopus
  160. C.-J. Shen, Y.-X. Yang, E. Q. Han et al., “Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma,” Journal of Hematology and Oncology, vol. 6, no. 1, article 33, 2013. View at Publisher · View at Google Scholar · View at Scopus
  161. K. G. Lucas, L. Bao, R. Bruggeman, K. Dunham, and C. Specht, “The detection of CMV pp65 and IE1 in glioblastoma multiforme,” Journal of Neuro-Oncology, vol. 103, no. 2, pp. 231–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  162. K. Dziurzynski, J. Wei, W. Qiao et al., “Glioma-associated cytomegalovirus mediates subversion of the monocyte lineage to a tumor propagating phenotype,” Clinical Cancer Research, vol. 17, no. 14, pp. 4642–4649, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. A. Ghazi, A. Ashoori, P. J. Hanley et al., “Generation of polyclonal CMV-specific T cells for the adoptive immunotherapy of glioblastoma,” Journal of Immunotherapy, vol. 35, no. 2, pp. 159–168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  164. T. Crough, L. Beagley, C. Smith, L. Jones, D. G. Walker, and R. Khanna, “Ex vivo functional analysis, expansion and adoptive transfer of cytomegalovirus-specific T-cells in patients with glioblastoma multiforme,” Immunology and Cell Biology, vol. 90, no. 9, pp. 872–880, 2012. View at Publisher · View at Google Scholar · View at Scopus
  165. C. E. Brown, R. Starr, A. Naranjo et al., “Adoptive transfer of autologous IL13-zetakine+ engineered T cell clones for the treatment of recurrent glioblastoma: lessons from the Clinic,” Molecular Therapy, vol. 19, supplement 1, pp. S136–S137, 2011. View at Google Scholar
  166. J. H. Sampson, A. B. Heimberger, G. E. Archer et al., “Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma,” Journal of Clinical Oncology, vol. 28, no. 31, pp. 4722–4729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. R. A. Morgan, J. C. Yang, M. Kitano, M. E. Dudley, C. M. Laurencot, and S. A. Rosenberg, “Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2,” Molecular Therapy, vol. 18, no. 4, pp. 843–851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. Y. Zhang, G. Joe, E. Hexner, J. Zhu, and S. G. Emerson, “Host-reactive CD8+ memory stem cells in graft-versus-host disease,” Nature Medicine, vol. 11, no. 12, pp. 1299–1305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  169. C. A. Klebanoff, L. Gattinoni, and N. P. Restifo, “Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy?” Journal of Immunotherapy, vol. 35, no. 9, pp. 651–660, 2012. View at Publisher · View at Google Scholar · View at Scopus
  170. C. S. Hinrichs, R. Spolski, C. M. Paulos et al., “IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy,” Blood, vol. 111, no. 11, pp. 5326–5333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. Y. Li, M. Bleakley, and C. Yee, “IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response,” The Journal of Immunology, vol. 175, no. 4, pp. 2261–2269, 2005. View at Google Scholar · View at Scopus
  172. N. Pouw, E. Treffers-Westerlaken, A. Mondino, C. Lamers, and R. Debets, “TCR gene-engineered T cell: limited T cell activation and combined use of IL-15 and IL-21 ensure minimal differentiation and maximal antigen-specificity,” Molecular Immunology, vol. 47, no. 7-8, pp. 1411–1420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  173. L. Gattinoni, X.-S. Zhong, D. C. Palmer et al., “Wnt signaling arrests effector T cell differentiation and generates CD8 + memory stem cells,” Nature Medicine, vol. 15, no. 7, pp. 808–813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. S. Muralidharan, P. J. Hanley, E. Liu et al., “Activation of Wnt signaling arrests effector differentiation in human peripheral and cord blood-derived T lymphocytes,” The Journal of Immunology, vol. 187, no. 10, pp. 5221–5232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  175. E. Lugli, M. H. Dominguez, L. Gattinoni et al., “Superior T memory stem cell persistence supports long-lived T cell memory,” The Journal of Clinical Investigation, vol. 123, no. 2, pp. 594–599, 2013. View at Publisher · View at Google Scholar · View at Scopus
  176. C. A. Klebanoff, L. Gattinoni, P. Torabi-Parizi et al., “Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 27, pp. 9571–9576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  177. L. Gattinoni, E. Lugli, Y. Ji et al., “A human memory T cell subset with stem cell-like properties,” Nature Medicine, vol. 17, no. 10, pp. 1290–1297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  178. C. Tanchot, M. M. Rosado, F. Agenes, A. A. Freitas, and B. Rocha, “Lymphocyte homeostasis,” Seminars in Immunology, vol. 9, no. 6, pp. 331–337, 1997. View at Publisher · View at Google Scholar · View at Scopus
  179. M. Cobbold, N. Khan, B. Pourgheysari et al., “Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers,” The Journal of Experimental Medicine, vol. 202, no. 3, pp. 379–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  180. B. K. Cho, V. P. Rao, Q. Ge, H. N. Eisen, and J. Chen, “Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells,” The Journal of Experimental Medicine, vol. 192, no. 4, pp. 549–556, 2000. View at Publisher · View at Google Scholar · View at Scopus
  181. W. Dummer, A. G. Niethammer, R. Baccala et al., “T cell homeostatic proliferation elicits effective antitumor autoimmunity,” The Journal of Clinical Investigation, vol. 110, no. 2, pp. 185–192, 2002. View at Publisher · View at Google Scholar · View at Scopus
  182. W. Asavaroengchai, Y. Kotera, and J. J. Mulé, “Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 2, pp. 931–936, 2002. View at Publisher · View at Google Scholar · View at Scopus
  183. H.-M. Hu, C. H. Poehlein, W. J. Urba, and B. A. Fox, “Development of antitumor immune responses in reconstituted lymphopenic hosts,” Cancer Research, vol. 62, no. 14, pp. 3914–3919, 2002. View at Google Scholar · View at Scopus
  184. N. Koike, S. Pilon-Thomas, and J. J. Mulé, “Nonmyeloablative chemotherapy followed by T-cell adoptive transfer and dendritic cell-based vaccination results in rejection of established melanoma,” Journal of Immunotherapy, vol. 31, no. 4, pp. 402–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  185. J. J. Hong, S. A. Rosenberg, M. E. Dudley et al., “Successful treatment of melanoma brain metastases with adoptive cell therapy,” Clinical Cancer Research, vol. 16, no. 19, pp. 4892–4898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. S. A. Rosenberg and M. E. Dudley, “Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, supplement 2, pp. 14639–14645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  187. C. King, A. Ilic, K. Koelsch, and N. Sarvetnick, “Homeostatic expansion of T cells during immune insufficiency generates autoimmunity,” Cell, vol. 117, no. 2, pp. 265–277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  188. T. Krupica Jr., T. J. Fry, and C. L. Mackall, “Autoimmunity during lymphopenia: a two-hit model,” Clinical Immunology, vol. 120, no. 2, pp. 121–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  189. D. J. Powell Jr., M. E. Dudley, K. A. Hogan, J. R. Wunderlich, and S. A. Rosenberg, “Adoptive transfer of vaccine-induced peripheral blood mononuclear cells to patients with metastatic melanoma following lymphodepletion,” The Journal of Immunology, vol. 177, no. 9, pp. 6527–6539, 2006. View at Google Scholar · View at Scopus
  190. L. Christiansson, S. Söderlund, E. Svensson et al., “Increased Level of Myeloid-Derived Suppressor Cells, Programmed Death Receptor Ligand 1/Programmed Death Receptor 1, and Soluble CD25 in Sokal High Risk Chronic Myeloid Leukemia,” PLoS ONE, vol. 8, no. 1, Article ID e55818, 2013. View at Publisher · View at Google Scholar · View at Scopus
  191. L. Wang, E. W. Y. Chang, S. Wong, S.-M. Ong, D. Q. Y. Chong, and K. L. Ling, “Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins,” The Journal of Immunology, vol. 190, no. 2, pp. 794–804, 2013. View at Publisher · View at Google Scholar · View at Scopus
  192. S. Ohki, M. Shibata, K. Gonda et al., “Circulating myeloid-derived suppressor cells are increased and correlate to immune suppression, inflammation and hypoproteinemia in patients with cancer,” Oncology Reports, vol. 28, no. 2, pp. 453–458, 2012. View at Publisher · View at Google Scholar · View at Scopus
  193. D. I. Gabrilovich and S. Nagaraj, “Myeloid-derived suppressor cells as regulators of the immune system,” Nature Reviews Immunology, vol. 9, no. 3, pp. 162–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  194. K. N. Kodumudi, A. Weber, A. A. Sarnaik, and S. Pilon-Thomas, “Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma,” The Journal of Immunology, vol. 189, no. 11, pp. 5147–5154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  195. C. J. Winstead, J. M. Fraser, and A. Khoruts, “Regulatory CD4 +CD25 +Foxp3 + T cells selectively inhibit the spontaneous form of lymphopenia-induced proliferation of naive T cells,” The Journal of Immunology, vol. 180, no. 11, pp. 7305–7317, 2008. View at Google Scholar · View at Scopus
  196. C. J. Winstead, C. S. Reilly, J. J. Moon et al., “CD4+CD25+Foxp3+ regulatory T cells optimize diversity of the conventional T cell repertoire during reconstitution from lymphopenia,” The Journal of Immunology, vol. 184, no. 9, pp. 4749–4760, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. J. Baba, S. Watanabe, Y. Saida et al., “Depletion of radio-resistant regulatory T cells enhances antitumor immunity during recovery from lymphopenia,” Blood, vol. 120, no. 12, pp. 2417–2427, 2012. View at Publisher · View at Google Scholar · View at Scopus
  198. J. H. Sampson, R. J. Schmittling, G. E. Archer et al., “A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma,” PLoS ONE, vol. 7, no. 2, Article ID e31046, 2012. View at Publisher · View at Google Scholar · View at Scopus
  199. C. Wrzesinski, C. M. Paulos, L. Gattinoni et al., “Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8+ T cells,” The Journal of Clinical Investigation, vol. 117, no. 2, pp. 492–501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  200. C. M. Paulos, C. Wrzesinski, A. Kaiser et al., “Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling,” The Journal of Clinical Investigation, vol. 117, no. 8, pp. 2197–2204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  201. A. Wallace, V. Kapoor, J. Sun et al., “Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers,” Clinical Cancer Research, vol. 14, no. 12, pp. 3966–3974, 2008. View at Publisher · View at Google Scholar · View at Scopus
  202. D. H. Wong'S, “Inhibiting TGF-β signaling restores immune surveillance in the SMA-560 glioma model,” Neuro-Oncology, vol. 9, no. 3, pp. 259–270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  203. M. Uhl, S. Aulwurm, J. Wischhusen et al., “SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo,” Cancer Research, vol. 64, no. 21, pp. 7954–7961, 2004. View at Publisher · View at Google Scholar · View at Scopus
  204. P. Hau, P. Jachimczak, and U. Bogdahn, “Treatment of malignant gliomas with TGF-β2 antisense oligonucleotides,” Expert Review of Anticancer Therapy, vol. 9, no. 11, pp. 1663–1674, 2009. View at Publisher · View at Google Scholar · View at Scopus
  205. U. Bogdahn, P. Hau, G. Stockhammer et al., “Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study,” Neuro-Oncology, vol. 13, no. 1, pp. 132–142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  206. C. B. Schmidt-Weber and K. Blaser, “Regulation and role of transforming growth factor-β in immune tolerance induction and inflammation,” Current Opinion in Immunology, vol. 16, no. 6, pp. 709–716, 2004. View at Publisher · View at Google Scholar · View at Scopus
  207. U. Petrausch, S. M. Jensen, C. Twitty et al., “Disruption of TGF-β signaling prevents the generation of tumor-sensitized regulatory T cells and facilitates therapeutic antitumor immunity,” The Journal of Immunology, vol. 183, no. 6, pp. 3682–3689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  208. P. E. Fecci, D. A. Mitchell, J. F. Whitesides et al., “Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma,” Cancer Research, vol. 66, no. 6, pp. 3294–3302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  209. D. A. Randolph and C. G. Fathman, “CD4+CD25+ regulatory T cells and their therapeutic potential,” Annual Review of Medicine, vol. 57, pp. 381–402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  210. W. Humphries, J. Wei, J. H. Sampson, and A. B. Heimberger, “The role of tregs in glioma-mediated immunosuppression: potential target for intervention,” Neurosurgery Clinics of North America, vol. 21, no. 1, pp. 125–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  211. D. J. Powell Jr., A. Felipe-Silva, M. J. Merino et al., “Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo,” The Journal of Immunology, vol. 179, no. 7, pp. 4919–4928, 2007. View at Google Scholar · View at Scopus
  212. D. A. Mitchell, X. Cui, R. J. Schmittling et al., “Monoclonal antibody blockade of IL-2 receptor α during lymphopenia selectively depletes regulatory T cells in mice and humans,” Blood, vol. 118, no. 11, pp. 3003–3012, 2011. View at Publisher · View at Google Scholar · View at Scopus
  213. P. E. Fecci, H. Ochiai, D. A. Mitchell et al., “Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function,” Clinical Cancer Research, vol. 13, no. 7, pp. 2158–2167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  214. P. Agarwalla, Z. Barnard, P. Fecci, G. Dranoff, and W. T. Curry, “Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors,” Journal of Immunotherapy, vol. 35, no. 5, pp. 385–389, 2012. View at Publisher · View at Google Scholar · View at Scopus
  215. R. Bedel, A. Thiery-Vuillemin, C. Grandclement et al., “Novel role for STAT3 in transcriptional regulation of NK immune cell targeting receptor MICA on cancer cells,” Cancer Research, vol. 71, no. 5, pp. 1615–1626, 2011. View at Publisher · View at Google Scholar · View at Scopus
  216. M. Fujita, X. Zhu, K. Sasaki et al., “Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma,” The Journal of Immunology, vol. 180, no. 4, pp. 2089–2098, 2008. View at Google Scholar · View at Scopus
  217. S. F. Hussain, L.-Y. Kong, J. Jordan et al., “A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients,” Cancer Research, vol. 67, no. 20, pp. 9630–9636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  218. J. Wei, F. Wang, L.-Y. Kong et al., “MiR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma,” Cancer Research, vol. 73, no. 13, pp. 3913–3926, 2013. View at Publisher · View at Google Scholar · View at Scopus
  219. C. Banissi, F. Ghiringhelli, L. Chen, and A. F. Carpentier, “Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model,” Cancer Immunology, Immunotherapy, vol. 58, no. 10, pp. 1627–1634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  220. J. T. Jordan, W. Sun, S. F. Hussain, G. DeAngulo, S. S. Prabhu, and A. B. Heimberger, “Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy,” Cancer Immunology, Immunotherapy, vol. 57, no. 1, pp. 123–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  221. F. Hirata, S. Nomiyama, and O. Hayaishi, “Indoleamine 2,3 dioxygenase. Note I. Catalytic and molecular properties,” Acta Vitaminologica et Enzymologica, vol. 29, no. 1–6, pp. 288–290, 1975. View at Google Scholar · View at Scopus
  222. O. Hayaishi, F. Hirata, M. Fujiwara, S. Senoh, and T. Tokuyama, “Indoleamine 2,3 dioxygenase. Note II. Biological function,” Acta Vitaminologica et Enzymologica, vol. 29, no. 1–6, pp. 291–293, 1975. View at Google Scholar · View at Scopus
  223. C. Uyttenhove, L. Pilotte, I. Théate et al., “Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase,” Nature Medicine, vol. 9, no. 10, pp. 1269–1274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  224. M. Friberg, R. Jennings, M. Alsarraj et al., “Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection,” International Journal of Cancer, vol. 101, no. 2, pp. 151–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  225. P. Hwu, M. X. Du, R. Lapointe, M. Do, M. W. Taylor, and H. A. Young, “Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation,” The Journal of Immunology, vol. 164, no. 7, pp. 3596–3599, 2000. View at Google Scholar · View at Scopus
  226. D. J. Chung, M. Rossi, E. Romano et al., “Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells,” Blood, vol. 114, no. 3, pp. 555–563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  227. X. Liu, N. Shin, H. K. Koblish et al., “Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity,” Blood, vol. 115, no. 17, pp. 3520–3530, 2010. View at Publisher · View at Google Scholar · View at Scopus
  228. M. Sioud, S. Sæbøe-Larssen, T. E. Hetland, J. Kærn, A. Mobergslien, and G. Kvalheim, “Silencing of indoleamine 2,3-dioxygenaseenhances dendritic cell immunogenicity and antitumour immunity in cancer patients,” International Journal of Oncology, vol. 43, no. 1, pp. 280–288, 2013. View at Publisher · View at Google Scholar · View at Scopus
  229. R. B. Sørensen, S. R. Hadrup, I. M. Svane, M. C. Hjortsø, P. T. Straten, and M. H. Andersen, “Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators,” Blood, vol. 117, no. 7, pp. 2200–2210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  230. V. P. Balachandran, M. J. Cavnar, S. Zeng et al., “Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido,” Nature Medicine, vol. 17, no. 9, pp. 1094–1100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  231. T. Miyazaki, K. Moritake, K. Yamada et al., “Indoleamine 2,3-dioxygenase as a new target for malignant glioma therapy: laboratory investigation,” Journal of Neurosurgery, vol. 111, no. 2, pp. 230–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  232. K. Mitsuka, T. Kawataki, E. Satoh, T. Asahara, T. Horikoshi, and H. Kinouchi, “Expression of indoleamine 2,3-dioxygenase and correlation with pathological malignancy in gliomas,” Neurosurgery, vol. 72, no. 6, pp. 1031–1039, 2013. View at Publisher · View at Google Scholar · View at Scopus
  233. D. A. Wainwright, I. V. Balyasnikova, A. L. Chang et al., “IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival,” Clinical Cancer Research, vol. 18, no. 22, pp. 6110–6121, 2012. View at Publisher · View at Google Scholar · View at Scopus
  234. B. D. Choi, P. E. Fecci, and J. H. Sampson, “Regulatory T cells move in when gliomas say “I DO”,” Clinical Cancer Research, vol. 18, no. 22, pp. 6086–6088, 2012. View at Publisher · View at Google Scholar · View at Scopus
  235. S. R. Mattarollo, T. Kenna, M. Nieda, and A. J. Nicol, “Chemotherapy pretreatment sensitizes solid tumor-derived cell lines to Vα24+ NKT cell-mediated cytotoxicity,” International Journal of Cancer, vol. 119, no. 7, pp. 1630–1637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  236. L. Aymeric, L. Apetoh, F. Ghiringhelli et al., “Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity,” Cancer Research, vol. 70, no. 3, pp. 855–858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  237. L. Zitvogel, L. Apetoh, F. Ghiringhelli, and G. Kroemer, “Immunological aspects of cancer chemotherapy,” Nature Reviews Immunology, vol. 8, no. 1, pp. 59–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  238. R. Ramakrishnan, D. Assudani, S. Nagaraj et al., “Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice,” The Journal of Clinical Investigation, vol. 120, no. 4, pp. 1111–1124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  239. M. Hong, A.-L. Puaux, C. Huang et al., “Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control,” Cancer Research, vol. 71, no. 22, pp. 6997–7009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  240. G. Tonon, “From oncogene to network addiction: the new frontier of cancer genomics and therapeutics,” Future Oncology, vol. 4, no. 4, pp. 569–577, 2008. View at Publisher · View at Google Scholar · View at Scopus
  241. I. B. Weinstein and A. K. Joe, “Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy,” Nature Clinical Practice Oncology, vol. 3, no. 8, pp. 448–457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  242. W. Yan, W. Zhang, and T. Jiang, “Oncogene addiction in gliomas: implications for molecular targeted therapy,” Journal of Experimental and Clinical Cancer Research, vol. 30, no. 1, article no. 58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  243. A. Boni, A. P. Cogdill, P. Dang et al., “Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function,” Cancer Research, vol. 70, no. 13, pp. 5213–5219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  244. R. C. Koya, S. Mok, N. Otte et al., “BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy,” Cancer Research, vol. 72, no. 16, pp. 3928–3937, 2012. View at Publisher · View at Google Scholar · View at Scopus
  245. S. A. Rosenberg, J. C. Yang, and N. P. Restifo, “Cancer immunotherapy: moving beyond current vaccines,” Nature Medicine, vol. 10, no. 9, pp. 909–915, 2004. View at Publisher · View at Google Scholar · View at Scopus