Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2014, Article ID 636893, 9 pages
http://dx.doi.org/10.1155/2014/636893
Review Article

Periodontitis as a Risk Factor of Atherosclerosis

Institute of Clinical and Experimental Dental Medicine, First Faculty of Medicine and General University Hospital, Charles University, Karlovo Namesti 32, 12000 Prague, Czech Republic

Received 8 November 2013; Revised 29 January 2014; Accepted 17 February 2014; Published 23 March 2014

Academic Editor: Douglas C. Hooper

Copyright © 2014 Jirina Bartova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Beck and S. Offenbacher, “The association between periodontal diseases and cardiovascular diseases: a state-of-the-science review,” Annals of Periodontology, vol. 6, no. 1, pp. 9–15, 2001. View at Google Scholar · View at Scopus
  2. F. A. Scannapieco and R. J. Genco, “Association of periodontal infections with atherosclerotic and pulmonary diseases,” Journal of Periodontal Research, vol. 34, no. 7, pp. 340–345, 1999. View at Google Scholar · View at Scopus
  3. W. J. Loesche, “Anaerobic periodontal infection as risk factors for medical diseases,” Current Infectious Disease Reports, vol. 1, no. 1, pp. 33–38, 1999. View at Publisher · View at Google Scholar
  4. A. P. Dasanayake, “Poor periodontal health of the pregnant woman as a risk factor for low birth weight,” Annals of Periodontology, vol. 3, no. 1, pp. 206–212, 1998. View at Google Scholar · View at Scopus
  5. M. S. Gomes, P. Chagas, D. M. Padilha et al., “Association between self-reported oral health, tooth loss and atherosclerotic burden,” Brazilian Oral Research, vol. 26, no. 5, pp. 436–442, 2012. View at Google Scholar
  6. Y. K. Minn, S. H. Suk, H. Park et al., “Tooth loss is associated with brain white matter change and silent infarction among adults without dementia and stroke,” Journal of Korean Medical Science, vol. 28, no. 6, pp. 929–933, 2013. View at Publisher · View at Google Scholar
  7. P. P. Hujoel, M. Drangsholt, C. Spiekerman, and T. A. DeRouen, “Periodontal disease and coronary heart disease risk,” The Journal of the American Medical Association, vol. 284, no. 11, pp. 1406–1410, 2000. View at Google Scholar · View at Scopus
  8. M. E. Peacock and R. E. Carson, “Frequency of self-reported medical conditions in periodontal patients,” Journal of Periodontology, vol. 66, no. 11, pp. 1004–1007, 1995. View at Google Scholar · View at Scopus
  9. P. B. Lockhart, A. F. Bolger, P. N. Papapanou et al., “Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association? A scientific statement from the american heart association,” Circulation, vol. 125, no. 20, pp. 2520–2544, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. W. J. Teeuw, D. E. Slot, H. Susanto et al., “Treatment of periodontitis improves the atherosclerotic profile: a systematic review and meta-analysis,” Journal of Clinical Periodontology, vol. 41, no. 1, pp. 70–79, 2014. View at Publisher · View at Google Scholar
  11. R. C. Page, “Milestones in periodontal research and the remaining critical issues,” Journal of Periodontal Research, vol. 34, no. 7, pp. 331–339, 1999. View at Google Scholar · View at Scopus
  12. H. V. Jordan and P. H. Keyes, “Aerobic, gram-positive, filamentous bacteria as etiologic agents of experimental periodontal disease in hamsters,” Archives of Oral Biology, vol. 9, no. 4, pp. 401–414, 1964. View at Google Scholar · View at Scopus
  13. H. Loe, E. Theilade, and H. B. Jensen, “Experimental gingivitis in man,” Journal of Periodontology Research, vol. 36, no. 3, pp. 177–187, 1965. View at Publisher · View at Google Scholar
  14. S. E. Mergenhagen, W. C. de Araujo, and E. Varah, “Antibody to Leptotrichia buccalis in human sera,” Archives of Oral Biology, vol. 10, no. 1, pp. 29–33, 1965. View at Google Scholar · View at Scopus
  15. B. W. Bainbridge and R. P. Darveau, “Porphyromonas gingivalis lipopolysaccharide: an unusual pattern recognition receptor ligand for the innate host defense system,” Acta Odontologica Scandinavica, vol. 59, no. 3, pp. 131–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Mlynek and A. Skoczyńska, “The proinflammatory activity of cadmium,” Postępy Higieny i Medycyny Doświadczalnej, vol. 59, pp. 1–8, 2005. View at Google Scholar
  17. A. Navas-Acien, E. Selvin, A. R. Sharrett, E. Calderon-Aranda, E. Silbergeld, and E. Guallar, “Lead, cadmium, smoking, and increased risk of peripheral arterial disease,” Circulation, vol. 109, no. 25, pp. 3196–3201, 2004. View at Google Scholar · View at Scopus
  18. R. Ross, “Atherosclerosis is an inflammatory disease,” The American Heart Journal, vol. 138, no. 5, pp. S419–S420, 1999. View at Google Scholar · View at Scopus
  19. Y. Higashi, C. Goto, T. Hidaka et al., “Oral infection-inflammatory pathway, periodontitis, is a risk factor for endothelial dysfunction in patients with coronary artery disease,” Atherosclerosis, vol. 206, no. 2, pp. 604–610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Steinberg, “Modified forms of low-density lipoprotein and atherosclerosis,” Journal of Internal Medicine, vol. 233, no. 3, pp. 227–232, 1993. View at Google Scholar · View at Scopus
  21. S. E. Epstein, Y. F. Zhou, and J. Zhu, “Potential role of cytomegalovirus in the pathogenesis of restenosis and atherosclerosis,” The American Heart Journal, vol. 138, no. 5, pp. S476–S478, 1999. View at Google Scholar · View at Scopus
  22. S. E. Epstein, J. Zhu, M. S. Burnett, Y. F. Zhou, G. Vercellotti, and D. Hajjar, “Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 6, pp. 1417–1420, 2000. View at Google Scholar · View at Scopus
  23. P. Libby, P. M. Ridker, and A. Maseri, “Inflammation and atherosclerosis,” Circulation, vol. 105, no. 9, pp. 1135–1143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M. L. Rufail, H. A. Schenkein, T. E. Koertge et al., “Atherogenic lipoprotein parameters in patients with aggressive periodontitis,” Journal of Periodontal Research, vol. 42, no. 6, pp. 495–502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Ross and J. A. Glomset, “Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis,” Science, vol. 180, no. 4093, pp. 1332–1339, 1973. View at Google Scholar · View at Scopus
  26. I. Chung, S. M. Schwartz, and C. E. Murry, “Clonal architecture of normal and atherosclerotic aorta: implications for atherogenesis and vascular development,” The American Journal of Pathology, vol. 152, no. 4, pp. 913–923, 1998. View at Google Scholar · View at Scopus
  27. V. V. Valtonen, “Role of infections in atherosclerosis,” The American Heart Journal, vol. 138, no. 5, part 2, pp. S431–S433, 1999. View at Google Scholar · View at Scopus
  28. J. A. Hubacek, J. Pit'ha, Z. Škodová, V. Staněk, and R. Poledne, “C(-260)→T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction,” Circulation, vol. 99, no. 25, pp. 3218–3220, 1999. View at Google Scholar · View at Scopus
  29. S. W. Chung, H. S. Kang, H. R. Park, S. J. Kim, S. J. Kim, and J. I. Choi, “Immune responses to heat shock protein in Porphyromonas gingivalis-infected periodontitis and atherosclerosis patients,” Journal of Periodontal Research, vol. 38, no. 4, pp. 388–393, 2003. View at Google Scholar · View at Scopus
  30. M. Straka and M. Trapezanlidis, “Periodontitis and stroke,” Neuroendocrinology Letters, vol. 34, no. 3, pp. 200–206, 2013. View at Google Scholar
  31. W. O. Chung, H. Dommisch, L. Yin, and B. A. Dale, “Expression of defensins in gingiva and their role in periodontal health and disease,” Current Pharmaceutical Design, vol. 13, no. 30, pp. 3073–3083, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. B. A. Dale, J. R. Kimball, S. Krisanaprakornkit et al., “Localized antimicrobial peptide expression in human gingiva,” Journal of Periodontal Research, vol. 36, no. 5, pp. 285–294, 2001. View at Google Scholar · View at Scopus
  33. T. E. van Dyke, H. U. Horoszewicz, L. J. Cianciola, and R. J. Genco, “Neutrophil chemotaxis dysfunction in human periodontitis,” Infection and Immunity, vol. 27, no. 1, pp. 124–132, 1980. View at Google Scholar · View at Scopus
  34. J. Prochazkova, J. Bartova, O. Krejsa, R. Smausova, J. Duskova, and L. Mrklas, “Changes in neutrophil function in patients with early onset periodontitis according to family occurence of the disease,” in Advances in Mucosal Immunology, Part A, J. Mestecky, M. W. Russell, S. Jackson, S. M. Michalek, H. Tlaskalova, and J. Sterzl, Eds., Springer, New York, NY, USA, 1995. View at Google Scholar
  35. P. N. Madianos, Y. A. Bobetsis, and D. F. Kinane, “Generation of inflammatory stimuli: how bacteria set up inflammatory responses in the gingiva,” Journal of Clinical Periodontology, vol. 32, supplement 6, pp. 57–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Medzhitov, “Toll-like receptors and innate immunity,” Nature Reviews Immunology, vol. 1, no. 2, pp. 135–145, 2001. View at Google Scholar · View at Scopus
  37. P. Wang, M. Shinohara, N. Murakawa et al., “Effect of cysteine protease of Porphyromonas gingivalis on adhesion molecules in gingival epithelial cells,” Japanese Journal of Pharmacology, vol. 80, no. 1, pp. 75–79, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. R. P. Darveau, C. M. Belton, R. A. Reife, and R. J. Lamont, “Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis,” Infection and Immunity, vol. 66, no. 4, pp. 1660–1665, 1998. View at Google Scholar · View at Scopus
  39. J. Zhang, H. Dong, S. Kashket, and M. J. Duncan, “IL-8 degradation by Porphyromonas gingivalis proteases,” Microbial Pathogenesis, vol. 26, no. 5, pp. 275–280, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Fletcher, K. Reddi, S. Poole et al., “Interactions between periodontopathogenic bacteria and cytokines,” Journal of Periodontal Research, vol. 32, no. 1, part 2, pp. 200–205, 1997. View at Google Scholar · View at Scopus
  41. H. Tada, S. Sugawara, E. Nemoto et al., “Proteolysis of ICAM-1 on human oral epithelial cells by gingipains,” Journal of Dental Research, vol. 82, no. 10, pp. 796–801, 2003. View at Google Scholar · View at Scopus
  42. H. Tada, S. Sugawara, E. Nemoto et al., “Proteolysis of CD14 on human gingival fibroblasts by arginine-specific cysteine proteinases from Porphyromonas gingivalis leading to down-regulation of lipopolysaccharide-induced interleukin-8 production,” Infection and Immunity, vol. 70, no. 6, pp. 3304–3307, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Sundqvist, J. Carlsson, B. Herrmann, and A. Tarnvik, “Degradation of human immunoglobulins G and M and complement factors C3 and C5 by black-pigmented bacteroides,” Journal of Medical Microbiology, vol. 19, no. 1, pp. 85–94, 1985. View at Google Scholar · View at Scopus
  44. T. E. Strandberg and R. S. Tilvis, “C-reactive protein, cardiovascular risk factors, and mortality in a prospective study in the elderly,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 4, pp. 1057–1060, 2000. View at Google Scholar · View at Scopus
  45. D. G. M. Bloemenkamp, M. A. van den Bosch, W. P. Mali et al., “Novel risk factors for peripheral arterial disease in young women,” The American Journal of Medicine, vol. 113, no. 6, pp. 462–467, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. F. D'Aiuto, D. Ready, and M. S. Tonetti, “Periodontal disease and C-reactive protein-associated cardiovascular risk,” Journal of Periodontal Research, vol. 39, no. 4, pp. 236–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. D. A. Smith, E. G. Zouridakis, M. Mariani, S. Fredericks, D. Cole, and J. C. Kaski, “Neopterin levels in patients with coronary artery disease are independent of Chlamydia pneumoniae seropositivity,” The American Heart Journal, vol. 146, no. 1, pp. 69–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. C. T. Barco, “Prevention of infective endocarditis: a review of the medical and dental literature,” Journal of Periodontology, vol. 62, no. 8, pp. 510–523, 1991. View at Google Scholar · View at Scopus
  49. C. G. Daly, D. H. Mitchell, J. E. Highfield, D. E. Grossberg, and D. Stewart, “Bacteremia due to periodontal probing: a clinical and microbiological investigation,” Journal of Periodontology, vol. 72, no. 2, pp. 210–214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. M. C. Herzberg and M. W. Meyer, “Effects of oral flora on platelets: possible consequences in cardiovascular disease,” Journal of Periodontology, vol. 67, supplement 10, pp. 1138–1142, 1996. View at Google Scholar · View at Scopus
  51. I. Tomás, M. Álvarez, J. Limeres, C. Potel, J. Medina, and P. Diz, “Prevalence, duration and aetiology of bacteraemia following dental extractions,” Oral Diseases, vol. 13, no. 1, pp. 56–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Pávek and Z. Broukal, “The clinical significance of bacteremia following tooth extraction,” Zahn-, Mund-, und Kieferheilkunde mit Zentralblatt, vol. 78, no. 5, pp. 403–406, 1990. View at Google Scholar · View at Scopus
  53. J. O. McLaughlin, W. A. Coulter, A. Coffey, and D. J. Burden, “The incidence of bacteremia after orthodontic banding,” The American Journal of Orthodontics and Dentofacial Orthopedics, vol. 109, no. 6, pp. 639–644, 1996. View at Google Scholar · View at Scopus
  54. D. J. Burden, W. A. Coulter, C. D. Johnston, B. Mullally, and M. Stevenson, “The prevalence of bacteraemia on removal of fixed orthodontic appliances,” European Journal of Orthodontics, vol. 26, no. 4, pp. 443–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. D. F. Kinane, H. Shiba, and T. C. Hart, “The genetic basis of periodontitis,” Periodontology 2000, vol. 39, pp. 91–117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. E. A. Roberts, K. A. McCaffery, and S. M. Michalek, “Profile of cytokine mRNA expression in chronic adult periodontitis,” Journal of Dental Research, vol. 76, no. 12, pp. 1833–1839, 1997. View at Google Scholar · View at Scopus
  57. W. A. Coulter, A. Coffey, I. D. Saunders, and A. M. Emmerson, “Bacteremia in children following dental extraction,” Journal of Dental Research, vol. 69, no. 10, pp. 1691–1695, 1990. View at Google Scholar · View at Scopus
  58. A. Rajasuo, S. Nyfors, A. Kanervo, H. Jousimies-Somer, C. Lindqvist, and R. Suuronen, “Bacteremia after plate removal and tooth extraction,” International Journal of Oral and Maxillofacial Surgery, vol. 33, no. 4, pp. 356–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. A. M. Murphy, C. G. Daly, D. H. Mitchell, D. Stewart, and B. H. Curtis, “Chewing fails to induce oral bacteraemia in patients with periodontal disease,” Journal of Clinical Periodontology, vol. 33, no. 10, pp. 730–736, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Ide, D. Jagdev, P. Y. Coward, M. Crook, G. R. Barclay, and R. F. Wilson, “The short-term effects of treatment of chronic periodontitis on circulating levels of endotoxin, c-reative protein, tumor necrosis factor-α, and interleukin-6,” Journal of Periodontology, vol. 75, no. 3, pp. 420–428, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. J. E. Lofthus, M. Y. Waki, D. L. Jolkovsky et al., “Bacteremia following subgingival irrigation and scaling and root planing,” Journal of Periodontology, vol. 62, no. 10, pp. 602–607, 1991. View at Google Scholar · View at Scopus
  62. B. Chiu, “Multiple infections in carotid atherosclerotic plaques,” The American Heart Journal, vol. 138, no. 5, part 2, pp. S534–S536, 1999. View at Google Scholar · View at Scopus
  63. V. I. Haraszthy, J. J. Zambon, M. Trevisan, M. Zeid, and R. J. Genco, “Identification of periodontal pathogens in atheromatous plaques,” Journal of Periodontology, vol. 71, no. 10, pp. 1554–1560, 2000. View at Google Scholar · View at Scopus
  64. D. Taylor-Robinson, J. Aduse-Opoku, P. Sayed, J. M. Slaney, B. J. Thomas, and M. A. Curtis, “Oro-dental bacteria in various atherosclerotic arteries,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 21, no. 10, pp. 755–757, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. N. Fiehn, T. Larsen, N. Christiansen, P. Holmstrup, and T. V. Schroeder, “Identification of periodontal pathogens in atherosclerotic vessels,” Journal of Periodontology, vol. 76, no. 5, pp. 731–736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Ford, E. Gemmell, P. Walker, M. West, M. Cullinan, and G. Seymour, “Characterization of heat shock protein-specific T cells in atherosclerosis,” Clinical and Diagnostic Laboratory Immunology, vol. 12, no. 2, pp. 259–267, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Kurihara, Y. Inoue, T. Iwai, M. Umeda, Y. Huang, and I. Ishikawa, “Detection and localization of periodontopathic bacteria in abdominal aortic aneurysms,” European Journal of Vascular and Endovascular Surgery, vol. 28, no. 5, pp. 553–558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. P. J. Ford, E. Gemmell, A. Chan et al., “Inflammation, heat shock proteins and periodontal pathogens in atherosclerosis: an immunohistologic study,” Oral Microbiology and Immunology, vol. 21, no. 4, pp. 206–211, 2006. View at Publisher · View at Google Scholar
  69. M. P. Cullinan and G. J. Seymour, “Periodontal disease and systemic illness: will the evidence ever be enough?” Periodontology 2000, vol. 62, no. 1, pp. 271–286, 2013. View at Publisher · View at Google Scholar
  70. E. Lalla, I. B. Lamster, M. A. Hofmann et al., “Oral infection with a periodontal pathogen accelerates early atherosclerosis in apolipoprotein E-null mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 8, pp. 1405–1411, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Stepankova, Z. Tonar, J. Bartova et al., “Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in Apo-E deficient mice fed standard low cholesterol diet,” Journal of Atherosclerosis and Thrombosis, vol. 17, no. 8, pp. 796–804, 2010. View at Google Scholar · View at Scopus
  72. L. Shapira, C. Champagne, T. E. van Dyke, and S. Amar, “Strain-dependent activation of monocytes and inflammatory macrophages by lipopolysaccharide of Porphyromonas gingivalis,” Infection and Immunity, vol. 66, no. 6, pp. 2736–2742, 1998. View at Google Scholar · View at Scopus
  73. M. Hirschfeld, J. J. Weis, V. Toshchakov et al., “Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages,” Infection and Immunity, vol. 69, no. 3, pp. 1477–1482, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Mattsson, L. Verhage, J. Rollof, A. Fleer, J. Verhoef, and H. van Dijk, “Peptidoglycan and teichoic acid from Staphylococcus epidermidis stimulate human monocytes to release tumour necrosis factor-α, interleukin-1β and interleukin 6,” FEMS Immunology and Medical Microbiology, vol. 7, no. 3, pp. 281–287, 1993. View at Publisher · View at Google Scholar · View at Scopus
  75. Z. M. Wang, C. Liu, and R. Dziarski, “Chemokines are the main proinflammatory mediators in human monocytes activated by Staphylococcus aureus, peptidoglycan, and endotoxin,” The Journal of Biological Chemistry, vol. 275, no. 27, pp. 20260–20267, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. K. M. Kengatharan, S. de Kimpe, C. Robson, S. J. Foster, and C. Thiemermann, “Mechanism of gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure,” Journal of Experimental Medicine, vol. 188, no. 2, pp. 305–315, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Forner, C. H. Nielsen, K. Bendtzen, T. Larsen, and P. Holmstrup, “Increased plasma levels of IL-6 in bacteremic periodontis patients after scaling,” Journal of Clinical Periodontology, vol. 33, no. 10, pp. 724–729, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. B. G. Loos, J. Craandijk, F. J. Hoek, P. M. E. Wertheim-van Dillen, and U. van der Velden, “Elevation of systemic markers related to cardiovascular diseases in the peripheral blood of periodontitis patients,” Journal of Periodontology, vol. 71, no. 10, pp. 1528–1534, 2000. View at Google Scholar · View at Scopus
  79. M. D. A. Petit, A. Wassenaar, U. van der Velden, W. van Eden, and B. C. Loos, “Depressed responsiveness of peripheral blood mononuclear cells to heat-shock proteins in periodontitis patients,” Journal of Dental Research, vol. 78, no. 8, pp. 1393–1400, 1999. View at Google Scholar · View at Scopus
  80. K. Tabeta, K. Yamazaki, H. Hotokezaka, H. Yoshie, and K. Hara, “Elevated humoral immune response to heat shock protein 60 (hsp60) family in periodontitis patients,” Clinical and Experimental Immunology, vol. 120, no. 2, pp. 285–293, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Wick, “Atherosclerosis—an autoimmune disease due to an immune reaction against heat-shock protein 60,” Herz, vol. 25, no. 2, pp. 87–90, 2000. View at Google Scholar · View at Scopus
  82. K. Yamazaki and T. Nakajima, “Antigen specificity and T-cell clonality in periodontal disease,” Periodontology 2000, vol. 35, pp. 75–100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Yamazaki, Y. Ohsawa, K. Tabeta et al., “Accumulation of human heat shock protein 60-reactive T cells in the gingival tissues of periodontitis patients,” Infection and Immunity, vol. 70, no. 5, pp. 2492–2501, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. J. E. Alard, M. Dueymes, P. Youinou, and C. Jamin, “Modulation of endothelial cell damages by anti-Hsp60 autoantibodies in systemic autoimmune diseases,” Autoimmunity Reviews, vol. 6, no. 7, pp. 438–443, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Wick, H. Perschinka, and G. Millonig, “Atherosclerosis as an autoimmune disease: an update,” Trends in Immunology, vol. 22, no. 12, pp. 665–669, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. P. J. Ford, K. Yamazaki, and G. J. Seymour, “Cardiovascular and oral disease interactions: what is the evidence?” Primary Dental Care, vol. 14, no. 2, pp. 59–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. S. J. Leishman, P. J. Ford, H. L. Do et al., “Periodontal pathogen load and increased antibody response to heat shock protein 60 in patients with cardiovascular disease,” Journal of Clinical Periodontology, vol. 39, no. 10, pp. 923–930, 2012. View at Publisher · View at Google Scholar
  88. G. C. Armitage, “Periodontal infections and cardiovascular disease—how strong is the association?” Oral Diseases, vol. 6, no. 6, pp. 335–350, 2000. View at Google Scholar · View at Scopus
  89. F. DeStefano, R. F. Anda, H. S. Kahn, D. F. Williamson, and C. M. Russell, “Dental disease and risk of coronary heart disease and mortality,” The British Medical Journal, vol. 306, no. 6879, pp. 688–691, 1993. View at Google Scholar · View at Scopus
  90. S. J. Janket, A. E. Baird, S. K. Chuang, and J. A. Jones, “Meta-analysis of periodontal disease and risk of coronary heart disease and stroke,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 95, no. 5, pp. 559–569, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. H. I. Morrison, L. F. Ellison, and G. W. Taylor, “Periodontal disease and risk of fatal coronary heart and cerebrovascular diseases,” Journal of Cardiovascular Risk, vol. 6, no. 1, pp. 7–11, 1999. View at Google Scholar · View at Scopus
  92. Y. Shoenfeld, D. Harats, and G. Wick, Atherosclerosis and Autoimmunity, Elsevier Science, Amsterdam, The Netherlands, 2001.
  93. H. C. Stary, “Lipid and macrophage accumulations in arteries of children and the development of atherosclerosis,” The American Journal of Clinical Nutrition, vol. 72, no. 5, pp. 1297S–1306S, 2000. View at Google Scholar · View at Scopus
  94. W. G. Haynes and C. Stanford, “Periodontal disease and atherosclerosis from dental to arterial plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 8, pp. 1309–1311, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. A. S. Kelly, S. E. Barlow, G. Rao et al., “Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the american heart association,” Circulation, vol. 128, no. 15, pp. 1689–1712, 2013. View at Publisher · View at Google Scholar
  96. E. S. Silva, P. N. Giglio, D. R. Waisberg, R. G. Filho, I. B. Casella, and P. Puech-Leao, “Obesity is a risk factor for significant carotid atheroslerosis in patients aged 39–55 years,” Angiology, 2013. View at Publisher · View at Google Scholar