Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2014, Article ID 686879, 11 pages
http://dx.doi.org/10.1155/2014/686879
Review Article

Immune Escape Mechanisms in Colorectal Cancer Pathogenesis and Liver Metastasis

1Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
2Medical Oncology Unit, Fatebenefratelli Hospital, 82100 Benevento, Italy
3Department of Pathology “Mater Salutis” Hospital, 37045 Legnago (VR), Italy
4Department of Surgery and Oncology, University of Verona, 37129 Verona, Italy
5Bioinformatics Lab, BIOGEM scrl, 83031 Ariano Irpino (AV), Italy

Received 8 September 2013; Revised 18 November 2013; Accepted 18 November 2013; Published 16 January 2014

Academic Editor: Saied Mirshahidi

Copyright © 2014 Massimo Pancione et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Google Scholar · View at Scopus
  2. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Ferlay, H.-R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. N. H. Segal and L. B. Saltz, “Evolving treatment of advanced colon cancer,” Annual Review of Medicine, vol. 60, pp. 207–219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Bardelli and S. Siena, “Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer,” Journal of Clinical Oncology, vol. 28, no. 7, pp. 1254–1261, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-P. Issa, “Colon Cancer: it's CIN or CIMP,” Clinical Cancer Research, vol. 14, no. 19, pp. 5939–5940, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Pancione, A. Remo, and V. Colantuoni, “Genetic and epigenetic events generate multiple pathways in colorectal cancer progression,” Pathology Research International, vol. 2012, Article ID 509348, 11 pages, 2012. View at Publisher · View at Google Scholar
  8. A. Remo, M. Pancione, C. Zanella, and R. Vendraminelli, “Molecular pathology of colorectal carcinoma. A systematic review centred on the new role of the pathologist,” Pathologica, vol. 104, no. 6, pp. 432–441, 2012. View at Google Scholar
  9. Cancer Genome Atlas Network, “Comprehensive Molecular Characterization of Human Colon and Rectal Cancer,” Nature, no. 487, pp. 330–337, 2012. View at Google Scholar
  10. E. M. Felipe De Sousa, X. Wang, M. Jansen et al., “Poor prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions,” Nature Medicine, vol. 19, pp. 614–618, 2013. View at Google Scholar
  11. A. Sadanandam, C. A. Lyssiotis, K. Homicsko et al., “A colorectal cancer classification system that associates cellular phenotype and responses to therapy,” Nature Medicine, vol. 19, pp. 619–625, 2013. View at Google Scholar
  12. F. Balkwill and A. Mantovani, “Inflammation and cancer: back to Virchow?” The Lancet, vol. 357, no. 9255, pp. 539–545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. L. R. Rudmik and A. M. Magliocco, “Molecular mechanisms of hepatic metastasis in colorectal cancer,” Journal of Surgical Oncology, vol. 92, no. 4, pp. 347–359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. G. DeNardo, M. Johansson, and L. M. Coussens, “Immune cells as mediators of solid tumor metastasis,” Cancer and Metastasis Reviews, vol. 27, no. 1, pp. 11–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Condeelis and J. W. Pollard, “Macrophages: obligate partners for tumor cell migration, invasion, and metastasis,” Cell, vol. 124, no. 2, pp. 263–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Trédan, C. M. Galmarini, K. Patel, and I. F. Tannock, “Drug resistance and the solid tumor microenvironment,” Journal of the National Cancer Institute, vol. 99, no. 19, pp. 1441–1454, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. I. P. Witz, “The tumor microenvironment: the making of a paradigm,” Cancer Microenvironment, vol. 2, supplement 1, pp. S9–S17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. B. B. McConnell and V. W. Yang, “The role of inflammation in the pathogenesis of colorectal cancer,” Current Colorectal Cancer Reports, vol. 5, no. 2, pp. 69–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. H. McLean, G. I. Murray, K. N. Stewart et al., “The inflammatory microenvironment in colorectal Neoplasia,” PLoS ONE, vol. 6, no. 1, Article ID e15366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Sethi and Y. Kang, “Unravelling the complexity of metastasis-molecular understanding and targeted therapies,” Nature Reviews Cancer, vol. 11, no. 10, pp. 735–748, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Smith and Y. Kang, “The metastasis-promoting role of tumor-associated immune cells,” Journal of Molecular Medicine, vol. 91, no. 4, pp. 411–429, 2013. View at Publisher · View at Google Scholar
  23. J. Wels, R. N. Kaplan, S. Rafii, and D. Lyden, “Migratory neighbors and distant invaders: tumor-associated niche cells,” Genes and Development, vol. 22, no. 5, pp. 559–574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. De Palma and C. E. Lewis, “Macrophage regulation of tumor responses to anticancer therapies,” Cancer Cell, vol. 23, no. 3, pp. 277–286, 2013. View at Google Scholar
  25. A. Mantovani, T. Schioppa, C. Porta, P. Allavena, and A. Sica, “Role of tumor-associated macrophages in tumor progression and invasion,” Cancer and Metastasis Reviews, vol. 25, no. 3, pp. 315–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. D. Garg, D. Nowis, J. Golab, P. Vandenabeele, D. V. Krysko, and P. Agostinis, “Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation,” Biochimica et Biophysica Acta, vol. 1805, no. 1, pp. 53–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Yamauchi, P. Lochhead, T. Morikawa et al., “Colorectal Cancer: a tale of two sides or a continuum?” Gut, vol. 61, no. 6, pp. 794–797, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Hanahan and L. M. Coussens, “Accessories to the crime: functions of cells recruited to the tumor microenvironment,” Cancer Cell, vol. 21, no. 3, pp. 309–322, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Tecchio, P. Scapini, G. Pizzolo, and M. A. Cassatella, “On the cytokines produced by human neutrophils in tumors,” Seminars in Cancer Biology, vol. 3, pp. 159–170, 2013. View at Google Scholar
  30. F. Donskov, “Immunomonitoring and prognostic relevance of neutrophils in clinical trials,” Seminars in Cancer Biology, vol. 23, pp. 200–207, 2013. View at Google Scholar
  31. F. Prall, T. Dührkop, V. Weirich et al., “Prognostic role of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability,” Human Pathology, vol. 35, no. 7, pp. 808–816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Pagès, A. Berger, M. Camus et al., “Effector memory T cells, early metastasis, and survival in colorectal cancer,” The New England Journal of Medicine, vol. 353, no. 25, pp. 2654–2666, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Pagès, J. Galon, and W. H. Fridman, “The essential role of the in situ immune reaction in human colorectal cancer,” Journal of Leukocyte Biology, vol. 84, no. 4, pp. 981–987, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. R. Jass, “Lymphocytic infiltration and survival in rectal cancer,” Journal of Clinical Pathology, vol. 39, no. 6, pp. 585–589, 1986. View at Google Scholar · View at Scopus
  35. K. M. Ropponen, M. J. Eskelinen, P. K. Lipponen, E. Alhava, and V. M. Kosma, “Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer,” The Journal of Pathology, no. 3, pp. 318–324, 1997. View at Google Scholar
  36. H. Ohtani, “Focus on TILs: Prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer,” Cancer Immunity, vol. 7, 2007. View at Google Scholar · View at Scopus
  37. J. Galon, A. Costes, F. Sanchez-Cabo et al., “Type, density, and location of immune cells within human colorectal tumors predict clinical outcome,” Science, vol. 313, no. 5795, pp. 1960–1964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Pagès, A. Kirilovsky, B. Mlecnik et al., “In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer,” Journal of Clinical Oncology, vol. 27, no. 35, pp. 5944–5951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Laghi, P. Bianchi, E. Miranda et al., “CD3+ cells at the invasive margin of deeply invading (pT3-T4) colorectal cancer and risk of post-surgical metastasis: a longitudinal study,” The Lancet Oncology, vol. 10, no. 9, pp. 877–884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Buckowitz, H.-P. Knaebel, A. Benner et al., “Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases,” British Journal of Cancer, vol. 92, no. 9, pp. 1746–1753, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Deschoolmeester, M. Baay, E. Van Marck et al., “Tumor infiltrating lymphocytes: an intriguing player in the survival of colorectal cancer patients,” BMC Immunology, vol. 11, article 19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Salama, M. Phillips, F. Grieu et al., “Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer,” Journal of Clinical Oncology, vol. 27, no. 2, pp. 186–192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Kirk, “Risk factors: CD8+/FOXP3+ cell ratio is a novel survival marker for colorectal cancer,” Nature Reviews Clinical Oncology, vol. 7, no. 6, p. 299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Wagner, M. Koch, D. Nummer et al., “Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer,” Annals of Surgical Oncology, vol. 15, no. 8, pp. 2310–2317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Morris, C. Platell, and B. Iacopetta, “Tumor-infiltrating lymphocytes and perforation in colon cancer predict positive response to 5-fluorouracil chemotherapy,” Clinical Cancer Research, vol. 14, no. 5, pp. 1413–1417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Ogino, K. Nosho, N. Irahara et al., “Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype,” Clinical Cancer Research, vol. 15, no. 20, pp. 6412–6420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Pancione, A. Remo, L. Sabatino et al., “Right-sided rhabdoid colorectal tumors might be related to the Serrated Pathway,” Diagnostic Pathology, vol. 8, article 31, 2013. View at Google Scholar
  48. S. Michel, A. Benner, M. Tariverdian et al., “High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability,” British Journal of Cancer, vol. 99, no. 11, pp. 1867–1873, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Kloor, S. Michel, and M. Von Knebel Doeberitz, “Immune evasion of microsatellite unstable colorectal cancers,” International Journal of Cancer, vol. 127, no. 5, pp. 1001–1010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis,” Nature Reviews Cancer, vol. 4, no. 1, pp. 71–78, 2004. View at Google Scholar · View at Scopus
  51. A. Mantovani, S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati, “Macrophage plasticity and polarization in tissue repair and remodelling,” The Journal of Pathology, no. 229, pp. 176–185, 2013. View at Google Scholar
  52. W. Zhang, X.-D. Zhu, H.-C. Sun et al., “Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects,” Clinical Cancer Research, vol. 16, no. 13, pp. 3420–3430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Sica and A. Mantovani, “Macrophage plasticity and polarization: in vivo veritas,” Journal of Clinical Investigation, vol. 122, no. 3, pp. 787–795, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. M. L. Squadrito and M. De Palma, “Macrophage regulation of tumor angiogenesis: implications for cancer therapy,” Molecular Aspects of Medicine, vol. 32, no. 2, pp. 123–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, “Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes,” Trends in Immunology, vol. 23, no. 11, pp. 549–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Sica, T. Schioppa, A. Mantovani, and P. Allavena, “Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy,” European Journal of Cancer, vol. 42, no. 6, pp. 717–727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Erreni, A. Mantovani, and P. Allavena, “Tumor-associated macrophages (TAM) and inflammation in colorectal cancer,” Cancer Microenvironment, vol. 4, no. 2, pp. 141–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. R. N. Kaplan, S. Rafii, and D. Lyden, “Preparing the “soil”: the premetastatic niche,” Cancer Research, vol. 66, no. 23, pp. 11089–11093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Jedinak, S. Dudhgaonkar, and D. Sliva, “Activated macrophages induce metastatic behavior of colon cancer cells,” Immunobiology, vol. 215, no. 3, pp. 242–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Mantovani, A. Sica, P. Allavena, C. Garlanda, and M. Locati, “Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation,” Human Immunology, vol. 70, no. 5, pp. 325–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. A. A. Khorana, C. K. Ryan, C. Cox, S. Eberly, and D. M. Sahasrabudhe, “Vascular endothelial growth factor, CD68, and epidermal growth factor receptor expression and survival in patients with stage II and stage III colon carcinoma: a role for the host response in prognosis,” Cancer, vol. 97, no. 4, pp. 960–968, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. S. K. Biswas, A. Sica, and C. E. Lewis, “Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms,” Journal of Immunology, vol. 180, no. 4, pp. 2011–2017, 2008. View at Google Scholar · View at Scopus
  63. J. Forssell, Å. Öberg, M. L. Henriksson, R. Stenling, A. Jung, and R. Palmqvist, “High macrophage infiltration along the tumor front correlates with improved survival in colon cancer,” Clinical Cancer Research, vol. 13, no. 5, pp. 1472–1479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. Q. Zhou, R.-Q. Peng, X.-J. Wu et al., “The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer,” Journal of Translational Medicine, vol. 8, article 13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Edin, M. L. Wikberg, A. M. Dahlin et al., “The distribution of macrophages with a m1 or m2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer,” PLoS One, no. 7, Article ID e47045, 2012. View at Google Scholar
  66. I. Kareva and P. Hahnfeldt, “The emerging “hallmarks” of metabolic reprogramming and immune evasion: distinct or linked?” Cancer Research, vol. 73, pp. 2737–2274, 2013. View at Google Scholar
  67. D. I. Gabrilovich and S. Nagaraj, “Myeloid-derived suppressor cells as regulators of the immune system,” Nature Reviews Immunology, vol. 9, no. 3, pp. 162–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. D. I. Gabrilovich, S. Ostrand-Rosenberg, and V. Bronte, “Coordinated regulation of myeloid cells by tumours,” Nature Reviews Immunology, vol. 12, no. 4, pp. 253–268, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. M. B. Maniecki, A. Etzerodt, B. P. Ulhøi et al., “Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells,” International Journal of Cancer, no. 131, pp. 2320–2331, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. I. Shabo, H. Olsson, X.-F. Sun, and J. Svanvik, “Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time,” International Journal of Cancer, vol. 125, no. 8, pp. 1826–1831, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. J. A. Joyce and J. W. Pollard, “Microenvironmental regulation of metastasis,” Nature Reviews Cancer, vol. 9, no. 4, pp. 239–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. B.-Z. Qian and J. W. Pollard, “Macrophage diversity enhances tumor progression and metastasis,” Cell, vol. 141, no. 1, pp. 39–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Mantovani, “Cancer: inflaming metastasis,” Nature, vol. 457, no. 7225, pp. 36–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. H. K. Eltzschig, L. F. Thompson, J. Karhausen et al., “Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism,” Blood, vol. 104, no. 13, pp. 3986–3992, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. J. J. Kobie, P. R. Shah, L. Yang, J. A. Rebhahn, D. J. Fowell, and T. R. Mosmann, “T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine,” Journal of Immunology, vol. 177, no. 10, pp. 6780–6786, 2006. View at Google Scholar · View at Scopus
  76. J. Stagg, “The double-edge sword effect of anti-CD73 cancer therapy,” Oncoimmunology, vol. 1, no. 2, pp. 217–218, 2012. View at Google Scholar
  77. B. Zhang, “CD73: A novel target for cancer immunotherapy,” Cancer Research, vol. 70, no. 16, pp. 6407–6411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Allard, M. Turcott e, and J. Stagg, “CD73-generated Adenosine: orchestrating the tumor stroma interplay to promote cancer growth,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 485156, 8 pages, 2012. View at Publisher · View at Google Scholar
  79. S. M. Pagnotta, C. Laudanna, M. Pancione et al., “Ensemble of gene signatures identifies novel biomarkers in colorectal Cancer activated through PPARγ and TNFα signaling,” PLoSOne, vol. 8, Article ID e72638, 2013. View at Google Scholar
  80. D. Cunningham, Y. Humblet, S. Siena et al., “Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer,” The New England Journal of Medicine, vol. 351, no. 4, pp. 337–345, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Hurwitz, L. Fehrenbacher, W. Novotny et al., “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer,” The New England Journal of Medicine, vol. 350, no. 23, pp. 2335–2342, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature, vol. 407, no. 6801, pp. 249–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. N. Ferrara, “VEGF and the quest for tumour angiogenesis factors,” Nature Reviews Cancer, vol. 2, no. 10, pp. 795–803, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. L. M. Ellis and D. J. Hicklin, “VEGF-targeted therapy: mechanisms of anti-tumour activity,” Nature Reviews Cancer, vol. 8, no. 8, pp. 579–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Bruchard, G. Mignot, V. Derangère et al., “Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth,” Nature Medicine, no. 19, pp. 57–64, 2013. View at Google Scholar
  86. A. Zoccoli, M. Iuliani, F. Pantano et al., “Premetastatic niche: Ready for new therapeutic interventions?” Expert Opinion on Therapeutic Targets, vol. 16, supplement 2, pp. S119–S129, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Hölzel , A. Bovier, and T. Tüting, “Plasticity of tumor and immune cells: a source for heterogeneity and cause for therapy resistance,” Nature Reviews Cancer, vol. 13, no. 5, pp. 365–376, 2013. View at Publisher · View at Google Scholar
  88. E. S. Nakasone, H. A. Askautrud, T. Kees et al., “Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance,” Cancer Cell, vol. 21, no. 4, pp. 488–503, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Nucera, D. Biziato, and M. de Palma, “The interplay between macrophages and angiogenesis in development, tissue injury and regeneration,” International Journal of Developmental Biology, vol. 55, no. 4-5, pp. 495–503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Van Cutsem, J. Tabernero, R. Lakomy et al., “Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen,” Journal of Clinical Oncology, no. 30, pp. 3499–33506, 2012. View at Google Scholar
  91. A. Grothey, E. Van Cutsem, A. Sobrero et al., “Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial,” The Lancet, vol. 381, no. 9863, pp. 303–312, 2013. View at Google Scholar
  92. S. M. Zeisberger, B. Odermatt, C. Marty, A. H. M. Zehnder-Fjällman, K. Ballmer-Hofer, and R. A. Schwendener, “Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach,” British Journal of Cancer, vol. 95, no. 3, pp. 272–281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. J. A. Joyce and J. W. Pollard, “Microenvironmental regulation of metastasis,” Nature Reviews Cancer, vol. 9, no. 4, pp. 239–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. S. J. Galli, N. Borregaard, and T. A. Wynn, “Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils,” Nature Immunology, vol. 12, no. 11, pp. 1035–1044, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Germano, R. Frapolli, C. Belgiovine et al., “Role of macrophage targeting in the antitumor activity of trabectedin,” Cancer Cell, no. 23, pp. 249–262, 2013. View at Google Scholar
  96. J. Pander, M. Heusinkveld, T. Van Der Straaten et al., “Activation of tumor-promoting type 2 macrophages by EGFR-targeting antibody cetuximab,” Clinical Cancer Research, vol. 17, no. 17, pp. 5668–5673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. H. He, J. Xu, C. M. Warren et al., “Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages,” Blood, no. 120, pp. 3152–3162, 2012. View at Google Scholar