Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2015, Article ID 315957, 6 pages
http://dx.doi.org/10.1155/2015/315957
Review Article

Comparative Immune Response in Children and Adults with H. pylori Infection

1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
3School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
4Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
5Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran

Received 1 March 2015; Accepted 15 April 2015

Academic Editor: Hasan Tarık Atmaca

Copyright © 2015 Alireza Razavi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Correa and M. B. Piazuelo, “Natural history of Helicobacter pylori infection,” Digestive and Liver Disease, vol. 40, no. 7, pp. 490–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Bagheri, A. Taghikhani, G. Rahimian et al., “Association between virulence factors of helicobacter pylori and gastric mucosal interleukin-18 mRNA expression in dyspeptic patients,” Microbial Pathogenesis, vol. 65, pp. 7–13, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Salimzadeh, N. Bagheri, B. Zamanzad et al., “Frequency of virulence factors in Helicobacter pylori-infected patients with gastritis,” Microbial Pathogenesis, vol. 80, pp. 67–72, 2015. View at Publisher · View at Google Scholar
  4. T. Suzuki, K. Kato, S. Ohara et al., “Localization of antigen-presenting cells in Helicobacter pylori-infected gastric mucosa,” Pathology International, vol. 52, no. 4, pp. 265–271, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Bagheri, F. Azadegan-Dehkordi, H. Shirzad, M. Rafieian-Kopaei, G. Rahimian, and A. Razavi, “The biological functions of IL-17 in different clinical expressions of Helicobacter pylori-infection,” Microbial Pathogenesis, vol. 81, pp. 33–38, 2015. View at Publisher · View at Google Scholar
  6. Y. Yamaoka, “Mechanisms of disease: Helicobacter pylori virulence factors,” Nature Reviews Gastroenterology and Hepatology, vol. 7, no. 11, pp. 629–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. L. E. Torres, K. Melián, A. Moreno et al., “Prevalence of vacA, cagA and babA2 genes in Cuban Helicobacter pylori isolates,” World Journal of Gastroenterology, vol. 15, no. 2, pp. 204–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Ricci, M. Giannouli, M. Romano, and R. Zarrilli, “Helicobacter pylori gamma-glutamyl transpeptidase and its pathogenic role,” World Journal of Gastroenterology, vol. 20, no. 3, pp. 630–638, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Song, H.-X. Chen, X.-Y. Wang et al., “H. pylori-encoded CagA disrupts tight junctions and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2,” Cellular Immunology, vol. 286, no. 1-2, pp. 22–30, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Covacci, S. Censini, M. Bugnoli et al., “Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 12, pp. 5791–5795, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Amjad, H. A. Osman, N. A. Razak, J. Kassian, J. Din, and N. B. Abdullah, “Clinical significance of Helicobacter pylori cagA and iceA genotype status,” World Journal of Gastroenterology, vol. 16, no. 35, pp. 4443–4447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Paziak-Domańska, M. Chmiela, A. Jarosińska, and W. Rudnicka, “Potential role of cagA in the inhibition of T cell reactivity in Helicobacter pylori infections,” Cellular Immunology, vol. 202, no. 2, pp. 136–139, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Backert and M. Naumann, “What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori,” Trends in Microbiology, vol. 18, no. 11, pp. 479–486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Raghavan and M. Quiding-Järbrink, “Immune modulation by regulatory T cells in Helicobacter pylori-associated diseases,” Endocrine, Metabolic and Immune Disorders—Drug Targets, vol. 12, no. 1, pp. 71–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Lamb and L.-F. Chen, “Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer,” Journal of Cellular Biochemistry, vol. 114, no. 3, pp. 491–497, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Backert, N. Tegtmeyer, and M. Selbach, “The versatility of Helicobacter pylori CagA effector protein functions: the master key hypothesis,” Helicobacter, vol. 15, no. 3, pp. 163–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. R. Amieva and E. M. El-Omar, “Host-bacterial interactions in Helicobacter pylori infection,” Gastroenterology, vol. 134, no. 1, pp. 306–323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Wen and S. F. Moss, “Helicobacter pylori virulence factors in gastric carcinogenesis,” Cancer Letters, vol. 282, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Herrera and J. Parsonnet, “Helicobacter pylori and gastric adenocarcinoma,” Clinical Microbiology and Infection, vol. 15, no. 11, pp. 971–976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. Park, A. Ko, and N. G. Lee, “Stimulation of growth of the human gastric pathogen Helicobacter pylori by atmospheric level of oxygen under high carbon dioxide tension,” BMC Microbiology, vol. 11, article 96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. J. D. Farrar, H. Asnagli, and K. M. Murphy, “T helper subset development: roles of instruction, selection, and transcription,” Journal of Clinical Investigation, vol. 109, no. 4, pp. 431–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. R. E. García Jacobo, C. J. Serrano, J. A. Enciso Moreno et al., “Analysis of Th1, Th17 and regulatory T cells in tuberculosis case contacts,” Cellular Immunology, vol. 289, no. 1-2, pp. 167–173, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. K. M. Murphy and S. L. Reiner, “The lineage decisions of helper T cells,” Nature Reviews Immunology, vol. 2, no. 12, pp. 933–944, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17,” Nature Immunology, vol. 6, no. 11, pp. 1133–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Tan, M. Ramaswamy, G. Shi, B. P. Vistica, R. M. Siegel, and I. Gery, “Inflammation-inducing Th1 and Th17 cells differ in their expression patterns of apoptosis-related molecules,” Cellular Immunology, vol. 271, no. 2, pp. 210–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Aggarwal, N. Ghilardi, M.-H. Xie, F. J. De Sauvage, and A. L. Gurney, “Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17,” Journal of Biological Chemistry, vol. 278, no. 3, pp. 1910–1914, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Iwakura, H. Ishigame, S. Saijo, and S. Nakae, “Functional specialization of interleukin-17 family members,” Immunity, vol. 34, no. 2, pp. 149–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Qi, X. Huang, and J. Wang, “Correlation between Th17 cells and tumor microenvironment,” Cellular Immunology, vol. 285, no. 1-2, pp. 18–22, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Nakae, A. Nambu, K. Sudo, and Y. Iwakura, “Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice,” Journal of Immunology, vol. 171, no. 11, pp. 6173–6177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Komiyama, S. Nakae, T. Matsuki et al., “IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 177, no. 1, pp. 566–573, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. P. R. Mangan, L. E. Harrington, D. B. O'Quinn et al., “Transforming growth factor-β induces development of the TH17 lineage,” Nature, vol. 441, no. 7090, pp. 231–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Ouyang, Z. Yang, R. Zhang et al., “Potentiation of Th17 cytokines in aging process contributes to the development of colitis,” Cellular Immunology, vol. 266, no. 2, pp. 208–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Sakaguchi, “Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self,” Nature Immunology, vol. 6, no. 4, pp. 345–352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Sakaguchi, “Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses,” Annual Review of Immunology, vol. 22, pp. 531–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. F. Heiber and T. L. Geiger, “Context and location dependence of adaptive Foxp3+ regulatory T cell formation during immunopathological conditions,” Cellular Immunology, vol. 279, no. 1, pp. 60–65, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. Curotto de Lafaille and J. J. Lafaille, “Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor?” Immunity, vol. 30, no. 5, pp. 626–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Rahimian, M. H. Sanei, H. Shirzad et al., “Virulence factors of Helicobacter pylori vacA increase markedly gastric mucosal TGF-beta1 mRNA expression in gastritis patients,” Microbial Pathogenesis, vol. 67-68, no. 1, pp. 1–7, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. A. M. Terrés and J. M. Pajares, “An increased number of follicles containing activated CD69+ helper T cells and proliferating CD71+ B cells are found in H. pylori-infected gastric mucosa,” The American Journal of Gastroenterology, vol. 93, no. 4, pp. 579–583, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Di Tommaso, Z. Xiang, M. Bugnoli et al., “Helicobacter pylori-specific CD4+ T-cell clones from peripheral blood and gastric biopsies,” Infection and Immunity, vol. 63, no. 3, pp. 1102–1106, 1995. View at Google Scholar · View at Scopus
  41. N. Bagheri, G. Rahimian, L. Salimzadeh et al., “Association of the virulence factors of Helicobacter pylori and gastric mucosal interleukin-17/23 mRNA expression in dyspeptic patients,” EXCLI Journal, vol. 12, pp. 5–14, 2013. View at Google Scholar · View at Scopus
  42. R. Caruso, F. Pallone, and G. Monteleone, “Emerging role of IL-23/IL-17 axis in H pylori-associated pathology,” World Journal of Gastroenterology, vol. 13, no. 42, pp. 5547–5551, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. M. M. D'Elios, M. Manghetti, M. De Carli et al., “T helper 1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease,” Journal of Immunology, vol. 158, no. 2, pp. 962–967, 1997. View at Google Scholar · View at Scopus
  44. C. Serrano, S. W. Wright, D. Bimczok et al., “Downregulated Th17 responses are associated with reduced gastritis in Helicobacter pylori-infected children,” Mucosal Immunology, vol. 6, no. 5, pp. 950–959, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Bontems, E. Aksoy, A. Burette et al., “NF-kappaB activation and severity of gastritis in Helicobacter pylori-infected children and adults,” Helicobacter, vol. 19, no. 3, pp. 157–167, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. P. R. Harris, S. W. Wright, C. Serrano et al., “Helicobacter pylori gastritis in children is associated with a regulatory T-cell response,” Gastroenterology, vol. 134, no. 2, pp. 491–499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. T. R. Bhuiyan, M. M. T. Islam, T. Uddin et al., “Th1 and Th17 responses to Helicobacter pylori in Bangladeshi infants, children and adults,” PLoS ONE, vol. 9, no. 4, Article ID e93943, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Freire de Melo, G. A. Rocha, A. M. C. Rocha et al., “Th1 immune response to H. pylori infection varies according to the age of the patients and influences the gastric inflammatory patterns,” International Journal of Medical Microbiology, vol. 304, no. 3-4, pp. 300–306, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Y. Y. Cho, M. S. Cho, and J. W. Seo, “FOXP3+ regulatory T cells in children with Helicobacter pylori infection,” Pediatric and Developmental Pathology, vol. 15, no. 2, pp. 118–126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Freire de Melo, A. M. C. Rocha, G. A. Rocha et al., “A regulatory instead of an IL-17 T response predominates in Helicobacter pylori-associated gastritis in children,” Microbes and Infection, vol. 14, no. 4, pp. 341–347, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Hernandez, C. Serrano, H. Einisman et al., “Peptic ulcer disease in Helicobacter pylori-infected children: clinical findings and mucosal immune response,” Journal of Pediatric Gastroenterology and Nutrition, vol. 59, no. 6, pp. 773–778, 2014. View at Google Scholar
  52. W. Chen, W. Jin, N. Hardegen et al., “Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3,” The Journal of Experimental Medicine, vol. 198, no. 12, pp. 1875–1886, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. I. I. Ivanov, B. S. McKenzie, L. Zhou et al., “The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells,” Cell, vol. 126, no. 6, pp. 1121–1133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. H.-H. Cheng, G.-Y. Tseng, H.-B. Yang, H.-J. Wang, H.-J. Lin, and W.-C. Wang, “Increased numbers of Foxp3-positive regulatory T cells in gastritis, peptic ulcer and gastric adenocarcinoma,” World Journal of Gastroenterology, vol. 18, no. 1, pp. 34–43, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Kimura, T. Naka, and T. Kishimoto, “IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12099–12104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Zhou, J. E. Lopes, M. M. W. Chong et al., “TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function,” Nature, vol. 453, no. 7192, pp. 236–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Fujimoto, M. Nakano, F. Terabe et al., “The influence of excessive IL-6 production in vivo on the development and function of Foxp3+ regulatory T cells,” Journal of Immunology, vol. 186, no. 1, pp. 32–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Zhang, F. Zeng, and K. Yan, “Topological sequence entropy of operators on function spaces,” Journal of Applied Functional Analysis, vol. 5, no. 3, pp. 325–329, 2010. View at Google Scholar · View at MathSciNet
  59. J. Y. Kao, M. Zhang, M. J. Miller et al., “Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice,” Gastroenterology, vol. 138, no. 3, pp. 1046–1054, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Bimczok, R. H. Clements, K. B. Waites et al., “Human primary gastric dendritic cells induce a Th1 response to H. pylori,” Mucosal Immunology, vol. 3, no. 3, pp. 260–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Bimczok, J. M. Grams, R. D. Stahl, K. B. Waites, L. E. Smythies, and P. D. Smith, “Stromal regulation of human gastric dendritic cells restricts the Th1 response to Helicobacter pylori,” Gastroenterology, vol. 141, no. 3, pp. 929–938, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Luzza, T. Parrello, G. Monteleone et al., “Up-regulation of IL-17 is associated with bioactive IL-8 expression in helicobacter pylori-infected human gastric mucosa,” Journal of Immunology, vol. 165, no. 9, pp. 5332–5337, 2000. View at Publisher · View at Google Scholar · View at Scopus