Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2015, Article ID 354957, 21 pages
http://dx.doi.org/10.1155/2015/354957
Review Article

Immunomodulatory Effects Mediated by Serotonin

1Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
2Department of Psychoimmunology, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
3School of Medicine, National Autonomous University of Mexico, Avenida Universidad 3000, Coyoacan, 04510 Mexico City, DF, Mexico
4Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Iztapalapa, 09340 Mexico City, DF, Mexico
5Genetics Unit Nutrition of Biomedical Research Institute of Universidad Nacional Autónoma de México at Instituto Nacional de Pediatría, Avenida del Iman No. 1, cuarto piso, Colonia Insurgentes-Cuicuilco, Coyoacan, 04530 Mexico City, DF, Mexico

Received 20 October 2014; Accepted 24 February 2015

Academic Editor: Douglas C. Hooper

Copyright © 2015 Rodrigo Arreola et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins; and (c) enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases.