Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2015, Article ID 678164, 14 pages
Review Article

The Bidirectional Relationship between Sleep and Immunity against Infections

1Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510 México, DF, Mexico
2Area de Neurociencias, Departmento de Biología de la Reproduccion, CBS, Universidad Autonoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Col Vicentina, Iztapalapa, 09340 Mexico City, DF, Mexico
3Grupo de Neurociencias, Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México, DF, Mexico
4Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomás, 11340 México, DF, Mexico
5Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, IPN Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomás, 11340 México, DF, Mexico
6Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, 14370 México, DF, Mexico

Received 3 October 2014; Accepted 24 December 2014

Academic Editor: Muhammad Atif Zahoor

Copyright © 2015 Elizabeth G. Ibarra-Coronado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.