Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2016 (2016), Article ID 8390356, 14 pages
http://dx.doi.org/10.1155/2016/8390356
Research Article

Clinical Associations of Biallelic and Monoallelic TNFRSF13B Variants in Italian Primary Antibody Deficiency Syndromes

1Department of Molecular Medicine, Sapienza Medical University, Viale Università 37, 00185 Rome, Italy
2Department of Medical Genetics, Policlinico S. Orsola-Malpighi, Medical University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
3Department of Pediatrics, Policlinico S. Orsola-Malpighi, Medical University of Bologna University of Bologna, Via Pietro Albertoni 15, 10138 Bologna, Italy
4Department of Clinical Medicine and Surgery, Medical University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy
5Department of Medical and Molecular Sciences, Torrette Hospital, Medical University of Ancona, Via Conca 71, 60126 Torrette, Italy

Received 11 December 2015; Revised 26 January 2016; Accepted 29 February 2016

Academic Editor: Carlos Rodriguez-Gallego

Copyright © 2016 Federica Pulvirenti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Conley, L. D. Notarangelo, and A. Etzioni, “Diagnostic criteria for primary immunodeficiencies: representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies),” Clinical Immunology, vol. 93, no. 3, pp. 190–197, 1999. View at Google Scholar
  2. B. Grimbacher, “The European Society for Immunodeficiencies (ESID) registry 2014,” Clinical & Experimental Immunology, vol. 178, supplement 1, pp. 18–20, 2014. View at Publisher · View at Google Scholar
  3. C. Cunningham-Rundles and C. Bodian, “Common variable immunodeficiency: clinical and immunological features of 248 patients,” Clinical Immunology, vol. 92, no. 1, pp. 34–48, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Quinti, A. Soresina, G. Spadaro et al., “Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency,” Journal of Clinical Immunology, vol. 27, no. 3, pp. 308–316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Park and A. I. Levinson, “Granulomatous-lymphocytic interstitial lung disease (GLILD) in common variable immunodeficiency (CVID),” Clinical Immunology, vol. 134, no. 2, pp. 97–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. E. S. Resnick, E. L. Moshier, J. H. Godbold, and C. Cunningham-Rundles, “Morbidity and mortality in common variable immune deficiency over 4 decades,” Blood, vol. 119, no. 7, pp. 1650–1657, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Quinti, C. Agostini, S. Tabolli et al., “Malignancies are the major cause of death in patients with adult onset common variable immunodeficiency,” Blood, vol. 120, no. 9, pp. 1953–1954, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. F. A. Bonilla, I. Barlan, H. Chapel et al., “ICON: common variable immunodeficiency disorders,” The Journal of Allergy and Clinical Immunology: In Practice, vol. 4, no. 1, pp. 38–59, 2016. View at Google Scholar
  9. S. Kruetzmann, M. M. Rosado, H. Weber et al., “Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen,” Journal of Experimental Medicine, vol. 197, no. 7, pp. 939–945, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Salzer, H. M. Chapel, A. D. B. Webster et al., “Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans,” Nature Genetics, vol. 37, no. 8, pp. 820–828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Castigli, S. A. Wilson, L. Garibyan et al., “TACI is mutant in common variable immunodeficiency and IgA deficiency,” Nature Genetics, vol. 37, no. 8, pp. 829–834, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. U. Salzer, C. Bacchelli, S. Buckridge et al., “Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes,” Blood, vol. 113, no. 9, pp. 1967–1976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Freiberger, B. Ravčuková, L. Grodecká et al., “Sequence variants of the TNFRSF13B gene in Czech CVID and IgAD patients in the context of other populations,” Human Immunology, vol. 73, no. 11, pp. 1147–1154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. R. López-Mejías, N. Del Pozo, M. Fernández-Arquero et al., “Role of polymorphisms in the TNFRSF13B (TACI) gene in Spanish patients with immunoglobulin A deficiency,” Tissue Antigens, vol. 74, no. 1, pp. 42–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Wu, D. Bressette, J. A. Carrell et al., “Tumor Necrosis Factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS,” The Journal of Biological Chemistry, vol. 275, no. 45, pp. 35478–35485, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Romberg, N. Chamberlain, D. Saadoun et al., “CVID-associated TACI mutations affect autoreactive B cell selection and activation,” Journal of Clinical Investigation, vol. 123, no. 10, pp. 4283–4293, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. B. He, R. Santamaria, W. Xu et al., “The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88,” Nature Immunology, vol. 11, no. 9, pp. 836–845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Zhang, J. Li, Y.-M. Zhang, X.-M. Zhang, and J. Tao, “Effect of TACI signaling on humoral immunity and autoimmune diseases,” Journal of Immunology Research, vol. 2015, Article ID 247426, 12 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Castigli, S. A. Wilson, S. Scott et al., “TACI and BAFF-R mediate isotype switching in B cells,” The Journal of Experimental Medicine, vol. 201, no. 1, pp. 35–39, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Romberg, M. Virdee, N. Chamberlain et al., “TNF receptor superfamily member 13b (TNFRSF13B) hemizygosity reveals transmembrane activator and CAML interactor haploinsufficiency at later stages of B-cell development,” Journal of Allergy and Clinical Immunology, vol. 136, no. 5, pp. 1315–1325, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. G.-U. von Bülow, J. M. van Deursen, and R. J. Bram, “Regulation of the T-independent humoral response by TACI,” Immunity, vol. 14, no. 5, pp. 573–582, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Yan, H. Wang, B. Chan et al., “Activation and accumulation of B cells in TACI-deficient mice,” Nature Immunology, vol. 2, no. 7, pp. 638–643, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. G. T. Mantchev, C. S. Cortesão, M. Rebrovich, M. Cascalho, and R. J. Bram, “TACI is required for efficient plasma cell differentiation in response to T-independent type 2 antigens,” The Journal of Immunology, vol. 179, no. 4, pp. 2282–2288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. G. S. Dickinson, G. Sun, R. J. Bram, and K. R. Alugupalli, “Efficient B cell responses to Borrelia hermsii infection depend on BAFF and BAFFR but not TACI,” Infection and Immunity, vol. 82, no. 1, pp. 453–459, 2013. View at Publisher · View at Google Scholar
  25. D. Seshasayee, P. Valdez, M. Yan, V. M. Dixit, D. Tumas, and I. S. Grewal, “Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor,” Immunity, vol. 18, no. 2, pp. 279–288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Mohammadi, C. Liu, A. Aghamohammadi et al., “Novel mutations in TACI (TNFRSF13B) causing common variable immunodeficiency,” Journal of Clinical Immunology, vol. 29, no. 6, pp. 777–785, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Speletas, A. Mamara, E. Papadopoulou-Alataki et al., “TNFRSF13B/TACI alterations in Greek patients with antibody deficiencies,” Journal of Clinical Immunology, vol. 31, no. 4, pp. 550–559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Kutukculer, N. Gulez, N. E. Karaca, G. Aksu, and A. Berdeli, “Three different classifications, B lymphocyte subpopulations, TNFRSF13B (TACI), TNFRSF13C (BAFF-R), TNFSF13 (APRIL) gene mutations, CTLA-4 and ICOS gene polymorphisms in Turkish patients with common variable immunodeficiency,” Journal of Clinical Immunology, vol. 32, no. 6, pp. 1165–1179, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. J. J. Lee, H. H. Jabara, L. Garibyan et al., “The C104R mutant impairs the function of transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) through haploinsufficiency,” Journal of Allergy and Clinical Immunology, vol. 126, no. 6, pp. 1234–1241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. J. Lee, I. Rauter, L. Garibyan et al., “The murine equivalent of the A181E TACI mutation associated with common variable immunodeficiency severely impairs B-cell function,” Blood, vol. 114, no. 11, pp. 2254–2262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. Pan-Hammarström, U. Salzer, L. Du et al., “Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency,” Nature Genetics, vol. 39, no. 4, pp. 429–430, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Moschese, F. M. Cavaliere, S. Graziani et al., “Decreased IgM, IgA, and IgG response to pneumococcal vaccine in children with transient hypogammaglobulinemia of infancy,” Journal of Allergy and Clinical Immunology, vol. 137, no. 2, pp. 617–619, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. F. M. Cavaliere, C. Milito, H. Martini et al., “Quantification of IgM and IgA anti-pneumococcal capsular polysaccharides by a new ELISA assay: a valuable diagnostic and prognostic tool for common variable immunodeficiency,” Journal of Clinical Immunology, vol. 33, no. 4, pp. 838–846, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Graziani, C. Cancrini, A. Finocchi et al., “The impact of TACI mutations: from hypogammaglobulinemia in infancy to autoimmunity in adulthood,” International Journal of Immunopathology and Pharmacology, vol. 25, no. 2, pp. 407–414, 2012. View at Google Scholar
  35. M. Speletas, U. Salzer, Z. Florou et al., “Heterozygous alterations of TNFRSF13B/TACI in tonsillar hypertrophy and sarcoidosis,” Clinical and Developmental Immunology, vol. 2013, Article ID 532437, 5 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Garibyan, A. A. Lobito, R. M. Siegel, M. E. Call, K. W. Wucherpfennig, and R. S. Geha, “Dominant-negative effect of the heterozygous C104R TACI mutation in common variable immunodeficiency (CVID),” The Journal of Clinical Investigation, vol. 117, no. 6, pp. 1550–1557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. La Cava, “Common variable immunodeficiency: two mutations are better than one,” Journal of Clinical Investigation, vol. 123, no. 10, pp. 4142–4143, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Arumugakani, P. M. D. Wood, and C. R. D. Carter, “Frequency of treg cells is reduced in CVID patients with autoimmunity and splenomegaly and is associated with expanded CD21lo B lymphocytes,” Journal of Clinical Immunology, vol. 30, no. 2, pp. 292–300, 2010. View at Publisher · View at Google Scholar · View at Scopus