Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2017, Article ID 4874280, 13 pages
https://doi.org/10.1155/2017/4874280
Research Article

Synergistic Antitumour Properties of viscumTT in Alveolar Rhabdomyosarcoma

1Department of Paediatric Oncology/Haematology, Otto-Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
2EPO GmbH, Experimental Pharmacology & Oncology, Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany
3Birken AG, Streiflingsweg 11, 75223 Niefern-Öschelbronn, Germany

Correspondence should be addressed to Georg Seifert; ed.etirahc@trefies.groeg

Received 20 January 2017; Revised 18 May 2017; Accepted 28 May 2017; Published 16 July 2017

Academic Editor: Daniel Ortuño-Sahagún

Copyright © 2017 Rahel Mascha Stammer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Kaatsch and C. Spix, German Childhood Cancer Registry - Annual Report 2015 (1980–2014). Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) at the University Medical Center of the Johannes Gutenberg University Mainz, Deutsches Kinderkrebsregister, Mainz, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. D. S. Hawkins, A. A. Gupta, and E. Rudzinski, “What’s new in the Biology and treatment of pediatric rhabdomyosarcoma?” Current Opinion in Pediatrics, vol. 26, no. 1, pp. 50–56, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Dagher and L. Helman, “Rhabdomyosarcoma: an overview,” The Oncologist, vol. 4, no. 1, pp. 34–44, 1999. View at Google Scholar
  4. E. Monti and A. Fanzani, “Uncovering metabolism in rhabdomyosarcoma,” Cell Cycle, vol. 15, no. 2, pp. 184–195, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. G. E. Mercado and F. G. Barr, “Fusions involving PAX and FOX genes in the molecular pathogenesis of alveolar rhabdomyosarcoma: recent advances,” Current Molecular Medicine, vol. 7, no. 1, pp. 47–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. F. G. Barr, N. Galili, J. Holick, J. A. Biegel, G. Rovera, and B. S. Emanuel, “Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma,” Nature Genetics, vol. 3, no. 2, pp. 113–117, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. P. H. Sorensen, J. C. Lynch, S. J. Qualman et al., “PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group,” Journal of Clinical Oncology, vol. 20, no. 11, pp. 2672–2679, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. D. S. Hawkins, S. L. Spunt, and S. X. Skapek, “Children’s oncology group’s 2013 blueprint for research: soft tissue sarcomas,” Pediatric Blood & Cancer, vol. 60, no. 6, pp. 1001–1008, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Sokolowski, C. B. Turina, K. Kikuchi, D. M. Langenau, and C. Keller, “Proof-of-concept rare cancers in drug development: the case for rhabdomyosarcoma,” Oncogene, vol. 33, no. 15, pp. 1877–1889, 2014. View at Google Scholar
  10. S. Hettmer, Z. Li, A. N. Billin et al., “Rhabdomyosarcoma: current challenges and their implications for developing therapies,” Cold Spring Harbor Perspectives in Medicine, vol. 4, no. 11, article a025650, 2014. View at Google Scholar
  11. H. Franz, P. Ziska, and A. Kindt, “Isolation and properties of three lectins from mistletoe (Viscum album L.),” The Biochemical Journal, vol. 195, no. 2, pp. 481–484, 1981. View at Publisher · View at Google Scholar
  12. K. Winterfeld and L. H. Bijl, “Viscotoxin, ein neuer Inhaltsstoff der Mistel (Viscum album L),” European Journal of Organic Chemistry, vol. 561, no. 2, pp. 107–115, 1949. View at Google Scholar
  13. G. Samuelsson, “Mistletoe Toxins,” Systematic Biology, vol. 22, no. 4, pp. 566–569, 1973. View at Google Scholar
  14. K. Urech, G. Schaller, and P. Ziska, “Comparative study on the cytotoxic effect of viscotoxin and mistletoe lectin on tumour cells in culture,” Phytotherapy Research, vol. 9, no. 1, pp. 49–55, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Wagner, B. Feil, and S. Bladt, Viscum album - die Mistel - Analyse und Standardisierung von Arzneidrogen und Phytopräparaten durch Hochleistungsflüssigchromatographie (HPLC) und andere chromatographische Verfahren (III), Deutsche Apotheker Zeitung, 1984.
  16. T. Fukunaga, I. Kajikawa, K. Nishiya, Y. Watanabe, K. Takeya, and H. Itokawa, “Studies on the constituents of the European mistletoe, Viscum album L,” Chemical & Pharmaceutical Bulletin, vol. 35, no. 8, pp. 3292–3297, 1987. View at Publisher · View at Google Scholar
  17. H. Becker, J. Exner, and G. Schilling, “Notizen: Isolierung und Strukturaufklärung von 2′-Hydroxy-4′, 6′dimethoxychalkon-4-glukosid aus Viscum album L. / isolation and identification of 2′-hydroxy-4′, 6′ -dimethoxy-chalkon-4-glucoside of Viscum album L,” Zeitschrift für Naturforschung C, vol. 33, no. 9-10, pp. 771–773, 1978. View at Google Scholar
  18. H. Becker and J. Exner, “Vergleichende Untersuchungen von Misteln verschiedener Wirtsbäume an Hand der Flavonoide and Phenolcarbonsäuren,” Zeitschrift für Pflanzenphysiologie, vol. 97, no. 5, pp. 417–428, 1980. View at Publisher · View at Google Scholar
  19. E. Jordan and H. Wagner, “Structure and properties of polysaccharides from Viscum album (L.),” Oncology, vol. 43, Supplement 1, pp. 8–15, 1986. View at Google Scholar
  20. C. Y. Klett and F. A. Anderer, “Activation of natural killer cell cytotoxicity of human blood monocytes by a low molecular weight component from Viscum album extract,” Arzneimittel-Forschung, vol. 39, no. 12, pp. 1580–1585, 1989. View at Google Scholar
  21. Y. K. Park, Y. R. Do, and B. C. Jang, “Apoptosis of K562 leukemia cells by Abnobaviscum F(R), a European mistletoe extract,” Oncology Reports, vol. 28, no. 6, pp. 2227–2232, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Kovacs, “Investigation of the proliferation, apoptosis/necrosis, and cell cycle phases in several human multiple myeloma cell lines. Comparison of Viscum album QuFrF extract with vincristine in an in vitro model,” ScientificWorldJournal, vol. 10, pp. 311–320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. F. Klingbeil, F. C. Xavier, L. R. Sardinha et al., “Cytotoxic effects of mistletoe (Viscum album L.) in head and neck squamous cell carcinoma cell lines,” Oncology Reports, vol. 30, no. 5, pp. 2316–2322, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Eggenschwiler, L. von Balthazar, B. Stritt et al., “Mistletoe lectin is not the only cytotoxic component in fermented preparations of Viscum album from white fir (Abies Pectinata),” BMC Complementary and Alternative Medicine, vol. 7, p. 14, 2007. View at Google Scholar
  25. G. Seifert, P. Jesse, A. Laengler et al., “Molecular mechanisms of mistletoe plant extract-induced apoptosis in acute lymphoblastic leukemia in vivo and in vitro,” Cancer Letters, vol. 264, no. 2, pp. 218–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Beuth, H. L. Ko, H. Schneider et al., “Intratumoral application of standardized mistletoe extracts down regulates tumor weight via decreased cell proliferation, increased apoptosis and necrosis in a murine model,” Anticancer Research, vol. 26, no. 6b, pp. 4451–4456, 2006. View at Google Scholar
  27. J. P. Duong Van Huyen, S. Delignat, J. Bayry et al., “Interleukin-12 is associated with the in vivo anti-tumor effect of mistletoe extracts in B16 mouse melanoma,” Cancer Letters, vol. 243, no. 1, pp. 32–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Rostock, R. Huber, T. Greiner et al., “Anticancer activity of a lectin-rich mistletoe extract injected intratumorally into human pancreatic cancer xenografts,” Anticancer Research, vol. 25, no. 3b, pp. 1969–1975, 2005. View at Google Scholar
  29. W. Tröger, D. Galun, M. Reif, A. Schumann, N. Stanković, and M. Milićević, “Viscum album [L.] extract therapy in patients with locally advanced or metastatic pancreatic cancer: a randomised clinical trial on overall survival,” European Journal of Cancer, vol. 49, no. 18, pp. 3788–3797, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Alabran, A. Cheuk, K. Liby et al., “Human neuroblastoma cells rapidly enter cell cycle arrest and apoptosis following exposure to C-28 derivatives of the synthetic triterpenoid CDDO,” Cancer Biology & Therapy, vol. 7, no. 5, pp. 709–717, 2008. View at Google Scholar
  31. X. Gao, D. Deeb, H. Jiang, Y. Liu, S. A. Dulchavsky, and S. C. Gautam, “Synthetic triterpenoids inhibit growth and induce apoptosis in human glioblastoma and neuroblastoma cells through inhibition of prosurvival Akt, NF-kappaB and Notch1 signaling,” Journal of Neuro-Oncology, vol. 84, no. 2, pp. 147–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Zhou, Z. Zhang, L. Zhao et al., “Inhibition of mTOR signaling by oleanolic acid contributes to its anti-tumor activity in osteosarcoma cells,” Journal of Orthopaedic Research, vol. 29, no. 6, pp. 846–852, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Zhang, H. Li, D. Chen, J. Ni, Y. Kang, and S. Wang, “Oleanolic acid induces apoptosis in human leukemia cells through caspase activation and poly(ADP-ribose) polymerase cleavage,” Acta Biochimica et Biophysica Sinica (Shanghai), vol. 39, no. 10, pp. 803–809, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Wu, C. Yang, C. Guo et al., “SZC015, a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MCF-7 breast cancer cells,” Chemico-Biological Interactions, vol. 244, pp. 94–104, 2016. View at Publisher · View at Google Scholar · View at Scopus
  35. L. X. Rui, S. Y. Shu, W. J. Jun et al., “The dual induction of apoptosis and autophagy by SZC014, a synthetic oleanolic acid derivative, in gastric cancer cells via NF-κB pathway,” Tumour Biology, vol. 37, no. 4, pp. 5133–5144, 2016. View at Google Scholar
  36. Y. Hua, Z. Zhang, J. Li et al., “Oleanolic acid derivative Dex-OA has potent anti-tumor and anti-metastatic activity on osteosarcoma cells in vitro and in vivo,” Investigational new Drugs, vol. 29, no. 2, pp. 258–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. H. F. Li, X. A. Wang, S. S. Xiang et al., “Oleanolic acid induces mitochondrial-dependent apoptosis and G0/G1 phase arrest in gallbladder cancer cells,” Drug Design, Development and Therapy, vol. 9, pp. 3017–3030, 2015. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Wang, H. Bai, X. Zhang et al., “Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis,” Carcinogenesis, vol. 34, no. 6, pp. 1323–1330, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Wei, M. Liu, H. Liu et al., “Oleanolic acid arrests cell cycle and induces apoptosis via ROS-mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cells,” Journal of Applied Toxicology, vol. 33, no. 8, pp. 756–765, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Jäger, K. Winkler, U. Pfüller, and A. Scheffler, “Solubility studies of oleanolic acid and betulinic acid in aqueous solutions and plant extracts of Viscum album L,” Planta Medica, vol. 73, no. 2, pp. 157–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. C. I. Delebinski, M. Twardziok, S. Kleinsimon et al., “A natural combination extract of Viscum album L. containing both triterpene acids and lectins is highly effective against AML in vivo,” PloS One, vol. 10, no. 8, article e0133892, 2015. View at Google Scholar
  42. C. I. Delebinski, S. Jaeger, K. Kemnitz-Hassanin, G. Henze, H. N. Lode, and G. J. Seifert, “A new development of triterpene acid-containing extracts from Viscum album L. displays synergistic induction of apoptosis in acute lymphoblastic leukaemia,” Cell Proliferation, vol. 45, no. 2, pp. 176–187, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Twardziok, S. Kleinsimon, J. Rolff et al., “Multiple active compounds from Viscum album L. synergistically converge to promote apoptosis in Ewing sarcoma,” PloS One, vol. 11, no. 9, article e0159749, 2016. View at Google Scholar
  44. S. Kleinsimon, G. Kauczor, S. Jaeger, A. Eggert, G. Seifert, and C. Delebinski, “viscumTT induces apoptosis and alters IAP expression in osteosarcoma in vitro and has synergistic action when combined with different chemotherapeutic drugs,” BMC Complementary and Alternative Medicine, vol. 17, no. 1, p. 26, 2017. View at Google Scholar
  45. C. M. Strüh, S. Jäger, A. Kersten, C. M. Schempp, A. Scheffler, and S. F. Martin, “Triterpenoids amplify anti-tumoral effects of mistletoe extracts on murine B16.f10 melanoma in vivo,” PloS One, vol. 8, no. 4, article e62168, 2013. View at Google Scholar
  46. C. M. Strüh, S. Jäger, C. M. Schempp, A. Scheffler, and S. F. Martin, “A novel triterpene extract from mistletoe induces rapid apoptosis in murine B16.F10 melanoma cells,” Phytotherapy Research, vol. 26, no. 10, pp. 1507–1512, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. O. Gloger, K. Witthohn, and B. W. Muller, “Lyoprotection of aviscumine with low molecular weight dextrans,” International Journal of Pharmaceutics, vol. 260, no. 1, pp. 59–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Webb, “Effect of more than one inhibitor,” in Enzyme and Metabolic Inhibitors, pp. 66–79, Academic Press, New York, 1963, (488–512). View at Google Scholar
  49. O. Janssen, A. Scheffler, and D. Kabelitz, “In vitro effects of mistletoe extracts and mistletoe lectins. Cytotoxicity towards tumor cells due to the induction of programmed cell death (apoptosis),” Arzneimittel-Forschung, vol. 43, no. 11, pp. 1221–1227, 1993. View at Google Scholar
  50. B. Schaffrath, U. Mengs, T. Schwarz et al., “Anticancer activity of rViscumin (recombinant mistletoe lectin) in tumor colonization models with immunocompetent mice,” Anticancer Research, vol. 21, no. 6a, pp. 3981–3987, 2001. View at Google Scholar
  51. P. Pratheeshkumar and G. Kuttan, “Oleanolic acid induces apoptosis by modulating p53, Bax, Bcl-2 and caspase-3 gene expression and regulates the activation of transcription factors and cytokine profile in B16F,” Journal of Environmental Pathology, Toxicology and Oncology, vol. 30, no. 1, pp. 21–31, 2011. View at Publisher · View at Google Scholar
  52. H. F. Ji, X. J. Li, and H. Y. Zhang, “Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia?” EMBO Reports, vol. 10, no. 3, pp. 194–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Gilbert and L. F. Alves, “Synergy in plant medicines,” Current Medicinal Chemistry, vol. 10, no. 1, pp. 13–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. E. M. Williamson, “Synergy and other interactions in phytomedicines,” Phytomedicine, vol. 8, no. 5, pp. 401–409, 2001. View at Publisher · View at Google Scholar
  55. H. Bantel, I. H. Engels, W. Voelter, K. Schulze-Osthoff, and S. Wesselborg, “Mistletoe lectin activates caspase-8/FLICE independently of death receptor signaling and enhances anticancer drug-induced apoptosis,” Cancer Research, vol. 59, no. 9, pp. 2083–2090, 1999. View at Google Scholar
  56. L. Y. Khil, W. Kim, S. Lyu, W. B. Park, J. W. Yoon, and H. S. Jun, “Mechanisms involved in Korean mistletoe lectin-induced apoptosis of cancer cells,” World Journal of Gastroenterology, vol. 13, no. 20, pp. 2811–2818, 2007. View at Google Scholar
  57. Y. Ito, P. Pandey, A. Place et al., “The novel triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid induces apoptosis of human myeloid leukemia cells by a caspase-8-dependent mechanism,” Cell Growth & Differentiation, vol. 11, no. 5, pp. 261–267, 2000. View at Google Scholar
  58. Y. Ito, P. Pandey, M. B. Sporn, R. Datta, S. Kharbanda, and D. Kufe, “The novel triterpenoid CDDO induces apoptosis and differentiation of human osteosarcoma cells by a caspase-8 dependent mechanism,” Molecular Pharmacology, vol. 59, no. 5, pp. 1094–1099, 2001. View at Google Scholar
  59. I. Samudio, S. Kurinna, P. Ruvolo et al., “Inhibition of mitochondrial metabolism by methyl-2-cyano-3,12-dioxooleana-1,9-diene-28-oate induces apoptotic or autophagic cell death in chronic myeloid leukemia cells,” Molecular Cancer Therapeutics, vol. 7, no. 5, pp. 1130–1139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Petronelli, E. Saulle, L. Pasquini et al., “High sensitivity of ovarian cancer cells to the synthetic triterpenoid CDDO-Imidazolide,” Cancer Letters, vol. 282, no. 2, pp. 214–228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. X. He, Y. Wang, H. Hu, and Z. Zhang, “In vitro and in vivo antimammary tumor activities and mechanisms of the apple total triterpenoids,” Journal of Agricultural and Food Chemistry, vol. 60, no. 37, pp. 9430–9436, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. K. H. Yoo, J. H. Park, E. J. Cui et al., “3-O-acetyloleanolic acid induces apoptosis in human colon carcinoma HCT-116 cells,” Phytotherapy Research, vol. 26, no. 10, pp. 1541–1546, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Eichenmüller, B. Hemmerlein, D. von Schweinitz, and R. Kappler, “Betulinic acid induces apoptosis and inhibits hedgehog signalling in rhabdomyosarcoma,” British Journal of Cancer, vol. 103, no. 1, pp. 43–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Fulda, C. Friesen, M. Los et al., “Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors,” Cancer Research, vol. 57, no. 21, pp. 4956–4964, 1997. View at Google Scholar
  65. I. Samudio, M. Konopleva, H. Pelicano et al., “A novel mechanism of action of methyl-2-cyano-3,12 dioxoolean-1,9 diene-28-oate: direct permeabilization of the inner mitochondrial membrane to inhibit electron transport and induce apoptosis,” Molecular Pharmacology, vol. 69, no. 4, pp. 1182–1193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Konopleva, T. Tsao, Z. Estrov et al., “The synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces caspase-dependent and -independent apoptosis in acute myelogenous leukemia,” Cancer Research, vol. 64, no. 21, pp. 7927–7935, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. S. J. Park, C. H. Wu, J. D. Gordon, X. Zhong, A. Emami, and A. R. Safa, “Taxol induces caspase-10-dependent apoptosis,” The Journal of Biological Chemistry, vol. 279, no. 49, pp. 51057–51067, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. H. J. Lee, J. O. Pyo, Y. Oh et al., “AK2 activates a novel apoptotic pathway through formation of a complex with FADD and caspase-10,” Nature Cell Biology, vol. 9, no. 11, pp. 1303–1310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Kang, S. J. Cao, Y. Zhou et al., “Inhibition of caspase-9 by oridonin, a diterpenoid isolated from Rabdosia rubescens, augments apoptosis in human laryngeal cancer cells,” International Journal of Oncology, vol. 47, no. 6, pp. 2045–2056, 2015. View at Publisher · View at Google Scholar · View at Scopus
  70. H. S. Jeong, H. Y. Choi, E. R. Lee et al., “Involvement of caspase-9 in autophagy-mediated cell survival pathway,” Biochimica et Biophysica Acta, vol. 1813, no. 1, pp. 80–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Gyrd-Hansen, T. Farkas, N. Fehrenbacher et al., “Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9,” Molecular and Cellular Biology, vol. 26, no. 21, pp. 7880–7891, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. M. A. McDonnell, D. Wang, S. M. Khan, M. G. Vander Heiden, and A. Kelekar, “Caspase-9 is activated in a cytochrome c-independent manner early during TNF|[alpha]|-induced apoptosis in murine cells,” Cell Death & Differentiation, vol. 10, no. 9, pp. 1005–1015, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. W. Zou, X. Liu, P. Yue et al., “C-Jun NH2-terminal kinase-mediated up-regulation of death receptor 5 contributes to induction of apoptosis by the novel synthetic triterpenoid methyl-2-Cyano-3,12-Dioxooleana-1, 9-Dien-28-Oate in human lung cancer cells,” Cancer Research, vol. 64, no. 20, pp. 7570–7578, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Fulda, “Molecular targeted therapies for rhabdomyosarcoma: focus on hedgehog and apoptosis signaling,” Klinische Pädiatrie, vol. 225, no. 3, pp. 115–119, 2013. View at Publisher · View at Google Scholar · View at Scopus
  75. X. Gao, Y. Liu, D. Deeb et al., “ROS mediate proapoptotic and antisurvival activity of oleanane triterpenoid CDDO-me in ovarian cancer cells,” Anticancer Research, vol. 33, no. 1, pp. 215–221, 2013. View at Google Scholar
  76. S. Shishodia, G. Sethi, M. Konopleva, M. Andreeff, and B. B. Aggarwal, “A synthetic triterpenoid, CDDO-me, inhibits IkappaBalpha kinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor kappaB-regulated gene products in human leukemic cells,” Clinical Cancer Research, vol. 12, no. 6, pp. 1828–1838, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Fulda, “Cell death pathways as therapeutic targets in rhabdomyosarcoma,” Sarcoma, vol. 2012, Article ID 326210, 5 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. V. Lavastre, M. Pelletier, R. Saller, K. Hostanska, and D. Girard, “Mechanisms involved in spontaneous and Viscum album agglutinin-I-induced human neutrophil apoptosis: Viscum album agglutinin-I accelerates the loss of antiapoptotic mcl-1 expression and the degradation of cytoskeletal paxillin and vimentin proteins via caspases,” Journal of Immunology, vol. 168, no. 3, pp. 1419–1427, 2002. View at Google Scholar
  79. K. Ryu, M. Susa, E. Choy et al., “Oleanane triterpenoid CDDO-me induces apoptosis in multidrug resistant osteosarcoma cells through inhibition of Stat3 pathway,” BMC Cancer, vol. 10, no. 1, p. 187, 2010. View at Google Scholar
  80. J. R. Fangusaro, H. Caldas, Y. Jiang, and R. A. Altura, “Survivin: an inhibitor of apoptosis in pediatric cancer,” Pediatric Blood & Cancer, vol. 47, no. 1, pp. 4–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. J. L. Koff, S. Ramachandiran, and L. Bernal-Mizrachi, “A time to kill: targeting apoptosis in cancer,” International Journal of Molecular Sciences, vol. 16, no. 2, pp. 2942–2955, 2015. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Caldas, M. P. Holloway, B. M. Hall, S. J. Qualman, and R. A. Altura, “Survivin-directed RNA interference cocktail is a potent suppressor of tumour growth in vivo,” Journal of Medical Genetics, vol. 43, no. 2, pp. 119–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. K. A. Lúcio, G. Rocha Gda, L. C. Monção-Ribeiro, J. Fernandes, C. M. Takiya, and C. R. Gattass, “Oleanolic acid initiates apoptosis in non-small cell lung cancer cell lines and reduces metastasis of a B16F10 melanoma model in vivo,” PloS One, vol. 6, no. 12, article e28596, 2011. View at Google Scholar
  84. Z. Duan, R. Y. Ames, M. Ryan, F. J. Hornicek, H. Mankin, and M. V. Seiden, “CDDO-me, a synthetic triterpenoid, inhibits expression of IL-6 and Stat3 phosphorylation in multi-drug resistant ovarian cancer cells,” Cancer Chemotherapy and Pharmacology, vol. 63, no. 4, pp. 681–689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. M. H. Shyu, T. C. Kao, and G. C. Yen, “Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP,” Journal of Agricultural and Food Chemistry, vol. 58, no. 10, pp. 6110–6118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Elluru, J. P. Duong Van Huyen, S. Delignat et al., “Molecular mechanisms underlying the immunomodulatory effects of mistletoe (Viscum album L.) extracts Iscador,” Arzneimittel-Forschung, vol. 56, no. 6a, pp. 461–466, 2006. View at Google Scholar
  87. T. Hajtó, K. Fodor, P. Perjési, and P. Németh, “Difficulties and perspectives of immunomodulatory therapy with mistletoe lectins and standardized mistletoe extracts in evidence-based medicine,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 298972, 6 pages, 2011. View at Publisher · View at Google Scholar