Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2017 (2017), Article ID 7261980, 5 pages
https://doi.org/10.1155/2017/7261980
Review Article

Understanding the Role of Chemokines and Cytokines in Experimental Models of Herpes Simplex Keratitis

Department of Ophthalmology, Saint Louis University, Saint Louis, MO, USA

Correspondence should be addressed to Patrick M. Stuart; ude.uls@2trautsp

Received 21 January 2017; Accepted 26 March 2017; Published 9 April 2017

Academic Editor: Chen Zhao

Copyright © 2017 Tayaba N. Azher et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Darougar, M. S. Wishart, and N. D. Viswalingam, “Epidemiological and clinical features of primary herpes simplex virus ocular infection,” British Journal of Opthalmology, vol. 69, no. 1, pp. 2–6, 1985. View at Google Scholar
  2. T. J. Liesegang, L. J. Melton, and P. J. DalyD. M. Ilstrup, “Epidemiology of ocular herpes simplex: incidence in Rochester, Minn, 1950 through 1982,” Archives of Ophthalmology, vol. 107, no. 8, pp. 1155–1159, 1989. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. Tang, W. Chen, and R. L. Hendricks, “Proinflammatory functions of IL-2 in herpes simplex virus corneal infection,” The Journal of Immunology, vol. 158, no. 3, pp. 1275–1283, 1997. View at Google Scholar
  4. M. Tsatsos, C. MacGregor, I. Athanasiadis, M. M. Moschos, P. Hossain, and D. Anderson, “Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents,” Clinical and Experimental Ophthalmology, vol. 44, no. 9, pp. 824–837, 2016. View at Publisher · View at Google Scholar
  5. S. Gaddipati, K. Estrada, P. Rao, A. D. Jerome, and S. Suvas, “IL-2/anti-IL-2 antibody complex treatment inhibits the development but not the progression of herpetic Stromal Keratitis,” The Journal of Immunology, vol. 194, no. 1, pp. 273–282, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. T. L. Keadle, D. E. Alexander, D. A. Leib, and P. M. Stuart, “Interferon gamma is not required for recurrent herpetic stromal keratitis,” Virology, vol. 380, no. 1, pp. 46–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. C. Reichard, N. R. Cheemarla, and N. J. Bigley, “SOCS1/3 expression levels in HSV-1-infected, cytokine-polarized and -unpolarized macrophages,” Journal of Interferon & Cytokine Research, vol. 35, no. 1, pp. 32–41, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Zhang and J. An, “Cytokines, inflammation, and pain,” International Anesthesiology Clinics, vol. 45, no. 2, pp. 27–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. Allen, S. E. Crown, and T. M. Handel, “Chemokine: receptor structure, interactions, and antagonism,” Annual Review of Immunology, vol. 25, no. 1, pp. 787–820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y.-H. Su, X.-T. Yan, J. E. Oakes, and R. L. Lausch, “Protective antibody therapy is associated with reduced chemokine transcripts in herpes simplex virus type 1 corneal infection,” Journal of Virology, vol. 70, no. 2, pp. 1277–1281, 1996. View at Google Scholar
  11. H. F. Staats and R. N. Lausch, “Cytokine expression in vivo during murine herpetic stromal keratitis. Effect of protective antibody therapy,” Journal of Immunology, vol. 151, no. 1, pp. 277–283, 1993. View at Google Scholar
  12. T. M. Tumpey, H. Cheng, D. N. Cook, O. Smithies, J. E. Oakes, and R. N. Lausch, “Absence of macrophage inflammatory protein-1α prevents the development of blinding herpes stromal keratitis,” Journal of Virology, vol. 72, no. 5, pp. 3705–3710, 1998. View at Google Scholar
  13. A. Suryawanshi, T. Veiga-Parga, N. K. Rajasagi et al., “Role of IL-17 and Th17 cells in herpes simplex virus-induced corneal Immunopathology,” The Journal of Immunology, vol. 187, no. 4, pp. 1919–1930, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Banerjee, P. S. Biswas, B. Kim, S. Lee, and B. T. Rouse, “CXCR2−/− mice show enhanced susceptibility to herpetic stromal keratitis: a role for IL-6-induced neovascularization,” The Journal of Immunology, vol. 172, no. 2, pp. 1237–1245, 2004. View at Publisher · View at Google Scholar
  15. A. Suryawanshi, T. Veiga-Parga, P. B. Reddy, N. K. Rajasagi, and B. T. Rouse, “IL-17A differentially regulates corneal vascular endothelial growth factor (VEGF)-A and soluble VEGF receptor 1 expression and promotes corneal angiogenesis after herpes simplex virus infection,” Journal of Immunology, vol. 188, no. 7, pp. 3434–3446, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. J. Molesworth-Kenyon, R. Yin, J. E. Oakes, and R. N. Lausch, “IL-17 receptor signaling influences virus-induced corneal inflammation,” Journal of Leukocyte Biology, vol. 83, no. 2, pp. 401–408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. R. Fenton, S. Molesworth-Kenyon, J. E. Oakes, and R. N. Lausch, “Linkage of IL-6 with neutrophil chemoattractant expression in virus-induced ocular inflammation,” Investigative Ophthalmology & Visual Science, vol. 43, no. 3, pp. 737–743, 2002. View at Google Scholar
  18. P. S. Biswas, K. Banerjee, P. R. Kinchington, and B. T. Rouse, “Involvement of IL-6 in the paracrine production of VEGF in ocular HSV-1 infection,” Experimental Eye Research, vol. 82, no. 1, pp. 46–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. X. T. Yan, T. M. Tumpey, S. L. Kunkel, J. E. Oakes, and R. N. Lausch, “Role of MIP-2 in neutrophil migration and tissue injury in the herpes simplex virus-1-infected cornea,” Investigative Ophthalmology & Visual Science, vol. 39, no. 10, pp. 1854–1862, 1998. View at Google Scholar
  20. X. T. Yan, M. Zhuang, J. E. Oakes, and R. N. Lausch, “Autocrine action of IL-10 suppresses proinflammatory mediators and inflammation in the HSV-1-infected cornea,” Journal of Leukocyte Biology, vol. 69, no. 1, pp. 149–157, 2001. View at Google Scholar
  21. B. Kim, P. P. Sarangi, Y. Lee, S. Deshpande Kaistha, S. Lee, and B. T. Rouse, “Depletion of MCP-1 increases development of herpetic stromal keratitis by innate immune modulation,” Journal of Leukocyte Biology, vol. 80, no. 6, pp. 1405–1415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Tang and R. L. Hendricks, “Interferon gamma regulates platelet endothelial cell adhesion molecule 1 expression and neutrophil infiltration into herpes simplex virus-infected mouse corneas,” The Journal of Experimental Medicine, vol. 184, no. 4, pp. 1435–1447, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. R. L. Hendricks, T. M. Tumpey, and A. Finnegan, “IFN-y and IL-2 are protective in the skin but pathologic in the corneas of HSV-1-infected mice,” Journal of Immunology, vol. 149, no. 9, pp. 3023–3028, 1992. View at Google Scholar
  24. T. Veiga-Parga, F. Giménez, S. Mulik, E. Y. Chiang, J. L. Grogan, and B. T. Rouse, “Controlling herpetic stromal keratitis by modulating lymphotoxin-alpha-mediated inflammatory pathways,” Microbes and Infection, vol. 15, no. 10-11, pp. 677–687, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. T. M. Tumpey, V. M. Elner, S. H. Chen, J. E. Oakes, and R. N. Lausch, “Interleukin-10 treatment can suppress stromal keratitis induced by herpes simplex virus type 1,” Journal of Immunology, vol. 153, no. 5, pp. 2258–2265, 1994. View at Google Scholar
  26. T. M. Tumpey, H. Cheng, X. T. Yan, J. E. Oakes, and R. N. Lausch, “Chemokine synthesis in the HSV-1-infected cornea and its suppression by interleukin-10,” Journal of Leukocyte Biology, vol. 63, no. 4, pp. 486–492, 1998. View at Google Scholar
  27. P. M. Stuart, J. E. Morris, M. Sidhu, and T. L. Keadle, “CCL3 protects mice from corneal pathology during recurrent HSV-1 infection,” Frontiers in Bioscience, vol. 13, pp. 4407–4415, 2008. View at Google Scholar
  28. J. Gallar, T. M. Tervo, W. Neira et al., “Selective changes in human corneal sensation associated with herpes simplex virus keratitis,” Investigative Ophthalmology & Visual Science, vol. 51, no. 9, pp. 4516–4522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Hamrah, A. Cruzat, M. H. Dastjerdi et al., “Corneal sensation and subbasal nerve alterations in patients with herpes simplex keratitis: an in vivo confocal microscopy study,” Ophthalmology, vol. 117, no. 10, pp. 1930–1936, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Mulik, J. Xu, P. B. Reddy et al., “Role of MiR-132 in angiogenesis after ocular infection with herpes simplex virus,” The American Journal of Pathology, vol. 181, no. 2, pp. 525–534, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Suryawanshi, S. Mulik, S. Sharma, P. B. Reddy, S. Sehrawat, and B. T. Rouse, “Ocular neovascularization caused by herpes simplex virus type 1 infection results from breakdown of binding between vascular endothelial growth factor A and its soluble receptor,” Journal of Immunology, vol. 186, no. 6, pp. 3653–3665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. T. R. Wuest and D. J. Carr, “VEGF-A expression by HSV-1-infected cells drives corneal lymphangiogenesis,” The Journal of Experimental Medicine, vol. 207, no. 1, pp. 101–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. P. S. Biswas, K. Banerjee, B. Kim, and B. T. Rouse, “Mice transgenic for IL-1 receptor antagonist protein are resistant to herpetic stromal keratitis: possible role for IL-1 in herpetic stromal keratitis pathogenesis,” Journal of Immunology, vol. 172, no. 6, pp. 3736–3744, 2004. View at Publisher · View at Google Scholar