Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2018, Article ID 3982942, 15 pages
https://doi.org/10.1155/2018/3982942
Research Article

Proteomic Identification of Heat Shock-Induced Danger Signals in a Melanoma Cell Lysate Used in Dendritic Cell-Based Cancer Immunotherapy

1Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, Universidad de Chile, 8380492 Santiago, Chile
2Millennium Institute on Immunology and Immunotherapy, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
3Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
4Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
5Laboratory of Molecular Virology, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, School of Medicine, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
6Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile

Correspondence should be addressed to Fermín E. González; lc.elihcu@zelaznogf and Roman A. Zubarev; es.ik@verabuz.namor

Received 29 June 2017; Revised 28 November 2017; Accepted 11 December 2017; Published 18 March 2018

Academic Editor: Aurelia Rughetti

Copyright © 2018 Fermín E. González et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Schuler, B. Schuler-Thurner, and R. M. Steinman, “The use of dendritic cells in cancer immunotherapy,” Current Opinion in Immunology, vol. 15, no. 2, pp. 138–147, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Banchereau, S. Paczesny, P. Blanco et al., “Dendritic cells: controllers of the immune system and a new promise for immunotherapy,” Annals of the New York Academy of Sciences, vol. 987, no. 1, pp. 180–187, 2003. View at Publisher · View at Google Scholar
  3. K. Palucka and J. Banchereau, “Cancer immunotherapy via dendritic cells,” Nature Reviews Cancer, vol. 12, no. 4, pp. 265–277, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Schmitt, R. Morita, L. Bourdery et al., “Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12,” Immunity, vol. 31, no. 1, pp. 158–169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. I. Mayordomo, T. Zorina, W. J. Storkus et al., “Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity,” Nature Medicine, vol. 1, no. 12, pp. 1297–1302, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ferrantini, I. Capone, and F. Belardelli, “Dendritic cells and cytokines in immune rejection of cancer,” Cytokine & Growth Factor Reviews, vol. 19, no. 1, pp. 93–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Hoebe, E. Janssen, and B. Beutler, “The interface between innate and adaptive immunity,” Nature Immunology, vol. 5, no. 10, pp. 971–974, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. F. E. González, A. Gleisner, F. Falcon-Beas, F. Osorio, M. N. López, and F. Salazar-Onfray, “Tumor cell lysates as immunogenic sources for cancer vaccine design,” Human Vaccines & Immunotherapeutics, vol. 10, no. 11, pp. 3261–3269, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Escobar, M. Lopez, A. Serrano et al., “Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients,” Clinical & Experimental Immunology, vol. 142, no. 3, pp. 555–568, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. N. Lopez, C. Pereda, G. Segal et al., “Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor β-expressing T cells,” Journal of Clinical Oncology, vol. 27, no. 6, pp. 945–952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Aguilera, C. Saffie, A. Tittarelli et al., “Heat-shock induction of tumor-derived danger signals mediates rapid monocyte differentiation into clinically effective dendritic cells,” Clinical Cancer Research, vol. 17, no. 8, pp. 2474–2483, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Tittarelli, F. E. González, C. Pereda et al., “Toll-like receptor 4 gene polymorphism influences dendritic cell in vitro function and clinical outcomes in vaccinated melanoma patients,” Cancer Immunology, Immunotherapy, vol. 61, no. 11, pp. 2067–2077, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Duran-Aniotz, G. Segal, L. Salazar et al., “The immunological response and post-treatment survival of DC-vaccinated melanoma patients are associated with increased Th1/Th17 and reduced Th3 cytokine responses,” Cancer Immunology, Immunotherapy, vol. 62, no. 4, pp. 761–772, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Shi, T. Cao, J. E. Connolly et al., “Hyperthermia enhances CTL cross-priming,” Journal of Immunology, vol. 176, no. 4, pp. 2134–2141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Mendoza-Naranjo, P. J. Saez, C. C. Johansson et al., “Functional gap junctions facilitate melanoma antigen transfer and cross-presentation between human dendritic cells,” Journal of Immunology, vol. 178, no. 11, pp. 6949–6957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Y. Chen and G. Nunez, “Sterile inflammation: sensing and reacting to damage,” Nature Reviews Immunology, vol. 10, no. 12, pp. 826–837, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. D. Garg, L. Galluzzi, L. Apetoh et al., “Molecular and translational classifications of DAMPs in immunogenic cell death,” Frontiers in Immunology, vol. 6, p. 588, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. F. E. González, C. Ortiz, M. Reyes et al., “Melanoma cell lysate induces CCR7 expression and in vivo migration to draining lymph nodes of therapeutic human dendritic cells,” Immunology, vol. 142, no. 3, pp. 396–405, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. P. J. Tacken, I. J. de Vries, R. Torensma, and C. G. Figdor, “Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting,” Nature Reviews Immunology, vol. 7, no. 10, pp. 790–802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. E. Ritchie, B. Phipson, D. Wu et al., “Limma powers differential expression analyses for RNA-sequencing and microarray studies,” Nucleic Acids Research, vol. 43, no. 7, article e47, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Szklarczyk, A. Franceschini, S. Wyder et al., “STRING v10: protein-protein interaction networks, integrated over the tree of life,” Nucleic Acids Research, vol. 43, no. D1, pp. D447–D452, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Dokladny, O. B. Myers, and P. L. Moseley, “Heat shock response and autophagy--cooperation and control,” Autophagy, vol. 11, no. 2, pp. 200–213, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Vigneron and B. J. Van den Eynde, “Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex,” Biomolecules, vol. 4, no. 4, pp. 994–1025, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Jamart, M. Francaux, G. Y. Millet, L. Deldicque, D. Frère, and L. Féasson, “Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running,” Journal of Applied Physiology, vol. 112, no. 9, pp. 1529–1537, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. J. A. Martina, H. I. Diab, L. Lishu et al., “The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris,” Science Signaling, vol. 7, no. 309, article ra9, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Geuens, D. Bouhy, and V. Timmerman, “The hnRNP family: insights into their role in health and disease,” Human Genetics, vol. 135, no. 8, pp. 851–867, 2016. View at Publisher · View at Google Scholar · View at Scopus
  27. N. R. Hope and G. I. Murray, “The expression profile of RNA-binding proteins in primary and metastatic colorectal cancer: relationship of heterogeneous nuclear ribonucleoproteins with prognosis,” Human Pathology, vol. 42, no. 3, pp. 393–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Y. Yau, H. C. Shih, M. H. Tsai, J. C. Sheu, C. H. Chen, and L. P. Chow, “Autoantibody recognition of an N-terminal epitope of hnRNP L marks the risk for developing HBV-related hepatocellular carcinoma,” Journal of Proteomics, vol. 94, pp. 346–358, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Lv, H. Wu, R. Xing et al., “HnRNP-L mediates bladder cancer progression by inhibiting apoptotic signaling and enhancing MAPK signaling pathways,” Oncotarget, vol. 8, no. 8, pp. 13586–13599, 2017. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Cao, Y. Li, R. Z. Luo et al., “Tyrosine-protein phosphatase nonreceptor type 12 is a novel prognostic biomarker for esophageal squamous cell carcinoma,” The Annals of Thoracic Surgery, vol. 93, no. 5, pp. 1674–1680, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Cao, Y. Z. Chen, R. Z. Luo et al., “Tyrosine-protein phosphatase non-receptor type 12 expression is a good prognostic factor in resectable non-small cell lung cancer,” Oncotarget, vol. 6, no. 13, pp. 11704–11713, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Yatim, S. Cullen, and M. L. Albert, “Dying cells actively regulate adaptive immune responses,” Nature Reviews Immunology, vol. 17, no. 4, pp. 262–275, 2017. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Asleh, S. Marsh, M. Shilkrut et al., “Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease,” Circulation Research, vol. 92, no. 11, pp. 1193–1200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Nielsen, H. J. Moller, and S. K. Moestrup, “Hemoglobin and heme scavenger receptors,” Antioxidants & Redox Signaling, vol. 12, no. 2, pp. 261–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Xie, Y. Li, Q. Zhang, M. J. Stiller, C. L. A. Wang, and J. W. Streilein, “Haptoglobin is a natural regulator of Langerhans cell function in the skin,” Journal of Dermatological Science, vol. 24, no. 1, pp. 25–37, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Ye, D. W. Cramer, S. J. Skates et al., “Haptoglobin-α subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry,” Clinical Cancer Research, vol. 9, no. 8, pp. 2904–2911, 2003. View at Google Scholar
  37. N. Ahmed, G. Barker, K. T. Oliva et al., “Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer,” British Journal of Cancer, vol. 91, no. 1, pp. 129–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Okuyama, Y. Ide, M. Nakano et al., “Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation,” International Journal of Cancer, vol. 118, no. 11, pp. 2803–2808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Takeda, S. Shinzaki, K. Okudo, K. Moriwaki, K. Murata, and E. Miyoshi, “Fucosylated haptoglobin is a novel type of cancer biomarker linked to the prognosis after an operation in colorectal cancer,” Cancer, vol. 118, no. 12, pp. 3036–3043, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Shen, Y. Song, C. M. Colangelo et al., “Haptoglobin activates innate immunity to enhance acute transplant rejection in mice,” The Journal of Clinical Investigation, vol. 122, no. 1, pp. 383–387, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Shen, E. Heuzey, D. N. Mori et al., “Haptoglobin enhances cardiac transplant rejection,” Circulation Research, vol. 116, no. 10, pp. 1670–1679, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Yang, H. Wang, Y. A. Levine et al., “Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes,” JCI Insight, vol. 1, no. 7, 2016. View at Publisher · View at Google Scholar
  43. P. J. Good, Q. Chen, S. J. Warner, and D. C. Herring, “A family of human RNA-binding proteins related to the Drosophila Bruno translational regulator,” The Journal of Biological Chemistry, vol. 275, no. 37, pp. 28583–28592, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Castello, B. Fischer, K. Eichelbaum et al., “Insights into RNA biology from an atlas of mammalian mRNA-binding proteins,” Cell, vol. 149, no. 6, pp. 1393–1406, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. A. G. Baltz, M. Munschauer, B. Schwanhausser et al., “The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts,” Molecular Cell, vol. 46, no. 5, pp. 674–690, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Iakova, G. L. Wang, L. Timchenko et al., “Competition of CUGBP1 and calreticulin for the regulation of p21 translation determines cell fate,” The EMBO Journal, vol. 23, no. 2, pp. 406–417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. A. N. Ladd, N. Charlet-B, and T. A. Cooper, “The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing,” Molecular and Cellular Biology, vol. 21, no. 4, pp. 1285–1296, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Paul, W. Dansithong, D. Kim et al., “Interaction of muscleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing,” The EMBO Journal, vol. 25, no. 18, pp. 4271–4283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. R. S. Laishram and R. A. Anderson, “The poly a polymerase star-PAP controls 3-end cleavage by promoting CPSF interaction and specificity toward the pre-mRNA,” The EMBO Journal, vol. 29, no. 24, pp. 4132–4145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Ichikawa, Y. Kubota, T. Nakamura et al., “MCRIP1, an ERK substrate, mediates ERK-induced gene silencing during epithelial-mesenchymal transition by regulating the co-repressor CtBP,” Molecular Cell, vol. 58, no. 1, pp. 35–46, 2015. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Bish, N. Cuevas-Polo, Z. Cheng et al., “Comprehensive protein interactome analysis of a key RNA helicase: detection of novel stress granule proteins,” Biomolecules, vol. 5, no. 3, pp. 1441–1466, 2015. View at Publisher · View at Google Scholar · View at Scopus
  52. A. A. Rose, M. G. Annis, Z. Dong et al., “ADAM10 releases a soluble form of the GPNMB/osteoactivin extracellular domain with angiogenic properties,” PLoS One, vol. 5, no. 8, article e12093, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. J. S. Chung, M. Bonkobara, M. Tomihari, P. D. Cruz Jr, and K. Ariizumi, “The DC-HIL/syndecan-4 pathway inhibits human allogeneic T-cell responses,” European Journal of Immunology, vol. 39, no. 4, pp. 965–974, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Lin, C. Li, Z. Xing et al., “The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer,” Nature Cell Biology, vol. 18, no. 2, pp. 213–224, 2016. View at Publisher · View at Google Scholar · View at Scopus
  55. M. A. Todd and D. J. Picketts, “PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex,” Journal of Proteome Research, vol. 11, no. 8, pp. 4326–4337, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. T. J. Loh, S. Cho, H. Moon et al., “hnRNP L inhibits CD44 V10 exon splicing through interacting with its upstream intron,” Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, vol. 1849, no. 6, pp. 743–750, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Yao, A. A. Potdar, P. S. Ray et al., “The HILDA complex coordinates a conditional switch in the 3-untranslated region of the VEGFA mRNA,” PLoS Biology, vol. 11, no. 8, article e1001635, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. D. T. Kuninger, T. Izumi, J. Papaconstantinou, and S. Mitra, “Human AP-endonuclease 1 and hnRNP-L interact with a nCaRE-like repressor element in the AP-endonuclease 1 promoter,” Nucleic Acids Research, vol. 30, no. 3, pp. 823–829, 2002. View at Publisher · View at Google Scholar
  59. A. Kapralov, I. I. Vlasova, W. Feng et al., “Peroxidase activity of hemoglobin-haptoglobin complexes: covalent aggregation and oxidative stress in plasma and macrophages,” The Journal of Biological Chemistry, vol. 284, no. 44, pp. 30395–30407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Cigliano, C. R. Pugliese, M. S. Spagnuolo, R. Palumbo, and P. Abrescia, “Haptoglobin binds the antiatherogenic protein apolipoprotein E - impairment of apolipoprotein E stimulation of both lecithin:cholesterol acyltransferase activity and cholesterol uptake by hepatocytes,” The FEBS Journal, vol. 276, no. 21, pp. 6158–6171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Kambara and M. Ikebe, “A unique ATP hydrolysis mechanism of single-headed processive myosin, myosin IX,” The Journal of Biological Chemistry, vol. 281, no. 8, pp. 4949–4957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Kong, F. Yi, P. Wen et al., “Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression,” The Journal of Clinical Investigation, vol. 125, no. 12, pp. 4407–4420, 2015. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Nishikawa, S. Nishikawa, A. Inoue, A. H. Iwane, T. Yanagida, and M. Ikebe, “A unique mechanism for the processive movement of single-headed myosin-IX,” Biochemical and Biophysical Research Communications, vol. 343, no. 4, pp. 1159–1164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Inoue, J. Saito, R. Ikebe, and M. Ikebe, “Myosin IXb is a single-headed minus-end-directed processive motor,” Nature Cell Biology, vol. 4, no. 4, pp. 302–306, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. O. D. Weiner, M. C. Rentel, A. Ott et al., “Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis,” PLoS Biology, vol. 4, no. 2, article e38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Adams and Z. Jia, “Structural and biochemical analysis reveal pirins to possess quercetinase activity,” The Journal of Biological Chemistry, vol. 280, no. 31, pp. 28675–28682, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Liu, I. Rehmani, S. Esaki et al., “Pirin is an iron-dependent redox regulator of NF-κB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 24, pp. 9722–9727, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Miyazaki, S. Simizu, H. Okumura, S. Takagi, and H. Osada, “A small-molecule inhibitor shows that pirin regulates migration of melanoma cells,” Nature Chemical Biology, vol. 6, no. 9, pp. 667–673, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Dechend, F. Hirano, K. Lehmann et al., “The Bcl-3 oncoprotein acts as a bridging factor between NF-kappaB/Rel and nuclear co-regulators,” Oncogene, vol. 18, no. 22, pp. 3316–3323, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. S. B. Hooks, S. P. Ragan, and K. R. Lynch, “Identification of a novel human phosphatidic acid phosphatase type 2 isoform,” FEBS Letters, vol. 427, no. 2, pp. 188–192, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Sahni, S. Yi, M. Taipale et al., “Widespread macromolecular interaction perturbations in human genetic disorders,” Cell, vol. 161, no. 3, pp. 647–660, 2015. View at Publisher · View at Google Scholar · View at Scopus
  72. X. Zhao, K. Southwick, H. L. Cardasis et al., “Peptidomic profiling of human cerebrospinal fluid identifies YPRPIHPA as a novel substrate for prolylcarboxypeptidase,” Proteomics, vol. 10, no. 15, pp. 2882–2886, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. G. V. Pusapati, T. Eiseler, A. Rykx et al., “Protein kinase D regulates RhoA activity via rhotekin phosphorylation,” The Journal of Biological Chemistry, vol. 287, no. 12, pp. 9473–9483, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Lu, J. Chen, L. A. Espinoza et al., “Protein kinase D 3 is localized in vesicular structures and interacts with vesicle-associated membrane protein 2,” Cellular Signalling, vol. 19, no. 4, pp. 867–879, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. Q. Yang, D. Co, J. Sommercorn, and N. K. Tonks, “Cloning and expression of PTP-PEST. A novel, human, nontransmembrane protein tyrosine phosphatase,” The Journal of Biological Chemistry, vol. 268, no. 9, pp. 6622–6628, 1993. View at Google Scholar
  76. H. Li, F. Yang, C. Liu et al., “Crystal structure and substrate specificity of PTPN12,” Cell Reports, vol. 15, no. 6, pp. 1345–1358, 2016. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Sun, N. Aceto, K. L. Meerbrey et al., “Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase,” Cell, vol. 144, no. 5, pp. 703–718, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. A. J. Garton, M. R. Burnham, A. H. Bouton, and N. K. Tonks, “Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatase substrate recognition,” Oncogene, vol. 15, no. 8, pp. 877–885, 1997. View at Publisher · View at Google Scholar
  79. R. Arroyo, M. Duran-Frigola, C. Berenguer, M. Soler-López, and P. Aloy, “Charting the molecular links between driver and susceptibility genes in colorectal cancer,” Biochemical and Biophysical Research Communications, vol. 445, no. 4, pp. 734–738, 2014. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Petschnigg, B. Groisman, M. Kotlyar et al., “The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells,” Nature Methods, vol. 11, no. 5, pp. 585–592, 2014. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Katoh, H. Imakagura, M. Futatsumori, and K. Nakayama, “Recruitment of clathrin onto endosomes by the Tom1-Tollip complex,” Biochemical and Biophysical Research Communications, vol. 341, no. 1, pp. 143–149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Franco, O. Furstoss, V. Simon, C. Benistant, W. J. Hong, and S. Roche, “The adaptor protein Tom1L1 is a negative regulator of Src mitogenic signaling induced by growth factors,” Molecular and Cellular Biology, vol. 26, no. 5, pp. 1932–1947, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Hegele, A. Kamburov, A. Grossmann et al., “Dynamic protein-protein interaction wiring of the human spliceosome,” Molecular Cell, vol. 45, no. 4, pp. 567–580, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. D. Cerecedo, R. Mondragon, B. Cisneros, F. Martinez-Perez, D. Martinez-Rojas, and A. Rendon, “Role of dystrophins and utrophins in platelet adhesion process,” British Journal of Haematology, vol. 134, no. 1, pp. 83–91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. J. L. Costantini, S. M. Cheung, S. Hou et al., “TAPP2 links phosphoinositide 3-kinase signaling to B-cell adhesion through interaction with the cytoskeletal protein utrophin: expression of a novel cell adhesion-promoting complex in B-cell leukemia,” Blood, vol. 114, no. 21, pp. 4703–4712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Inagaki, Y. Matsushima, K. Nakamura, M. Ohshima, T. Kadowaki, and Y. Kitagawa, “A large DNA-binding nuclear protein with RNA recognition motif and serine/arginine-rich domain,” The Journal of Biological Chemistry, vol. 271, no. 21, pp. 12525–12531, 1996. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Ehsan, H. Jiang, K. L. Thomson, and K. Gehmlich, “When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies,” Journal of Muscle Research and Cell Motility, vol. 38, no. 3-4, pp. 303–316, 2017. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Onishi, E. Adnan, J. Ishizaki et al., “Novel autoantigens associated with lupus nephritis,” PLoS One, vol. 10, no. 6, article e0126564, 2015. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Ren and A. J. Davidoff, “α2-Heremans Schmid glycoprotein, a putative inhibitor of tyrosine kinase, prevents glucose toxicity associated with cardiomyocyte dysfunction,” Diabetes/Metabolism Research and Reviews, vol. 18, no. 4, pp. 305–310, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. Z. Yan, K. Cui, D. M. Murray et al., “PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes,” Genes & Development, vol. 19, no. 14, pp. 1662–1667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. V. Legendre-Guillemin, M. Metzler, M. Charbonneau et al., “HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain,” Journal of Biological Chemistry, vol. 277, no. 22, pp. 19897–19904, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. C. Wu, M. H. Ma, K. R. Brown et al., “Systematic identification of SH3 domain-mediated human protein-protein interactions by peptide array target screening,” Proteomics, vol. 7, no. 11, pp. 1775–1785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Rolland, M. Tasan, B. Charloteaux et al., “A proteome-scale map of the human interactome network,” Cell, vol. 159, no. 5, pp. 1212–1226, 2014. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Maiweilidan, I. Klauza, and E. Kordeli, “Novel interactions of ankyrins-G at the costameres: the muscle-specific obscurin/titin-binding-related domain (OTBD) binds plectin and filamin C,” Experimental Cell Research, vol. 317, no. 6, pp. 724–736, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. W. B. Holmes and C. L. Moncman, “Nebulette interacts with filamin C,” Cell Motility and the Cytoskeleton, vol. 65, no. 2, pp. 130–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. G. Blandin, S. Marchand, K. Charton et al., “A human skeletal muscle interactome centered on proteins involved in muscular dystrophies: LGMD interactome,” Skeletal Muscle, vol. 3, no. 1, p. 3, 2013. View at Publisher · View at Google Scholar · View at Scopus
  97. C. A. Sargent, C. Young, S. Marsh, M. A. Ferguson-Smith, and N. A. Affara, “The glycerol kinase gene family: structure of the Xp gene, and related intronless retroposons,” Human Molecular Genetics, vol. 3, no. 8, pp. 1317–1324, 1994. View at Publisher · View at Google Scholar · View at Scopus
  98. J. H. Yik, R. Chen, R. Nishimura, J. L. Jennings, A. J. Link, and Q. Zhou, “Inhibition of P-TEFb (CDK9/cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA,” Molecular Cell, vol. 12, no. 4, pp. 971–982, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Czudnochowski, F. Vollmuth, S. Baumann, K. Vogel-Bachmayr, and M. Geyer, “Specificity of Hexim1 and Hexim2 complex formation with cyclin T1/T2, importin alpha and 7SK snRNA,” Journal of Molecular Biology, vol. 395, no. 1, pp. 28–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Varjosalo, R. Sacco, A. Stukalov et al., “Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS,” Nature Methods, vol. 10, no. 4, pp. 307–314, 2013. View at Publisher · View at Google Scholar · View at Scopus
  101. W. Liu, Q. Ma, K. Wong et al., “Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release,” Cell, vol. 155, no. 7, pp. 1581–1595, 2013. View at Publisher · View at Google Scholar · View at Scopus
  102. Z. Chen, A. J. Kastaniotis, I. J. Miinalainen, V. Rajaram, R. K. Wierenga, and J. K. Hiltunen, “17beta-hydroxysteroid dehydrogenase type 8 and carbonyl reductase type 4 assemble as a ketoacyl reductase of human mitochondrial FAS,” The FASEB Journal, vol. 23, no. 11, pp. 3682–3691, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. R. Venkatesan, S. K. Sah-Teli, L. O. Awoniyi et al., “Insights into mitochondrial fatty acid synthesis from the structure of heterotetrameric 3-ketoacyl-ACP reductase/3R-hydroxyacyl-CoA dehydrogenase,” Nature Communications, vol. 5, p. 4805, 2014. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Ohno, K. Nishikawa, Y. Honda, and S. Nakajin, “Expression in E. coli and tissue distribution of the human homologue of the mouse Ke 6 gene, 17β-hydroxysteroid dehydrogenase type 8,” Molecular and Cellular Biochemistry, vol. 309, no. 1-2, pp. 209–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. V. Slama and J. Dudek, “Stability of diluted solutions of peracetic acid,” Ceskoslovenská Farmacie, vol. 17, no. 1, pp. 40-41, 1968. View at Google Scholar
  106. K. K. Leung, R. J. Hause Jr., J. L. Barkinge, M. F. Ciaccio, C. P. Chuu, and R. B. Jones, “Enhanced prediction of Src homology 2 (SH2) domain binding potentials using a fluorescence polarization-derived c-Met, c-Kit, ErbB, and androgen receptor interactome,” Molecular & Cellular Proteomics, vol. 13, no. 7, pp. 1705–1723, 2014. View at Publisher · View at Google Scholar · View at Scopus
  107. X. Huang, Z. Shi, W. Wang et al., “Identification and characterization of a novel protein ISOC2 that interacts with p16INK4a,” Biochemical and Biophysical Research Communications, vol. 361, no. 2, pp. 287–293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Ando, Y. Y. Kikuti, H. Kawata et al., “Cloning of a new kinesin-related gene located at the centromeric end of the human MHC region,” Immunogenetics, vol. 39, no. 3, pp. 194–200, 1994. View at Google Scholar
  109. S. Li, L. Wang, M. Berman, Y. Y. Kong, and M. E. Dorf, “Mapping a dynamic innate immunity protein interaction network regulating type I interferon production,” Immunity, vol. 35, no. 3, pp. 426–440, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Eskildsen, J. Justesen, M. H. Schierup, and R. Hartmann, “Characterization of the 2-5-oligoadenylate synthetase ubiquitin-like family,” Nucleic Acids Research, vol. 31, no. 12, pp. 3166–3173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. H. Kristiansen, H. H. Gad, S. Eskildsen-Larsen, P. Despres, and R. Hartmann, “The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities,” Journal of Interferon & Cytokine Research, vol. 31, no. 1, pp. 41–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Donovan, M. Dufner, and A. Korennykh, “Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 5, pp. 1652–1657, 2013. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Y. Hein, N. C. Hubner, I. Poser et al., “A human interactome in three quantitative dimensions organized by stoichiometries and abundances,” Cell, vol. 163, no. 3, pp. 712–723, 2015. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. Chao, Y. Xing, Y. Chen et al., “Structure and mechanism of the phosphotyrosyl phosphatase activator,” Molecular Cell, vol. 23, no. 4, pp. 535–546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. E. Ogris, X. Du, K. C. Nelson et al., “A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A,” The Journal of Biological Chemistry, vol. 274, no. 20, pp. 14382–14391, 1999. View at Publisher · View at Google Scholar · View at Scopus
  116. S. O. Marx, S. Reiken, Y. Hisamatsu et al., “PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts,” Cell, vol. 101, no. 4, pp. 365–376, 2000. View at Publisher · View at Google Scholar
  117. A. Murayama, K. Ohmori, A. Fujimura et al., “Epigenetic control of rDNA loci in response to intracellular energy status,” Cell, vol. 133, no. 4, pp. 627–639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Kekuda, P. D. Prasad, Y. J. Fei, F. H. Leibach, and V. Ganapathy, “Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1),” Biochemical and Biophysical Research Communications, vol. 229, no. 2, pp. 553–558, 1996. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Figaro, N. Scrima, R. H. Buckingham, and V. Heurgué-Hamard, “HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1,” FEBS Letters, vol. 582, no. 16, pp. 2352–2356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. L. Songe-Moller, E. van den Born, V. Leihne et al., “Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding,” Molecular and Cellular Biology, vol. 30, no. 7, pp. 1814–1827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. D. Fu, J. A. Brophy, C. T. Chan et al., “Human AlkB homolog ABH8 is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival,” Molecular and Cellular Biology, vol. 30, no. 10, pp. 2449–2459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. T. Stuven, E. Hartmann, and D. Gorlich, “Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes,” The EMBO Journal, vol. 22, no. 21, pp. 5928–5940, 2003. View at Publisher · View at Google Scholar · View at Scopus