Table of Contents Author Guidelines Submit a Manuscript
Journal of Lipids
Volume 2011, Article ID 752906, 11 pages
http://dx.doi.org/10.1155/2011/752906
Review Article

Lipid Rafts in Mast Cell Biology

Departamento de Biologia Celular e Molecular e Biagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, Brazil

Received 13 September 2010; Accepted 28 December 2010

Academic Editor: Rhoderick Brown

Copyright © 2011 Adriana Maria Mariano Silveira e Souza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Allende and R. L. Proia, “Sphingosine-1-phosphate receptors and the development of the vascular system,” Biochimica et Biophysica Acta, vol. 1582, no. 1–3, pp. 222–227, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Pralle, P. Keller, E. L. Florin, K. Simons, and J. K. H. Hörber, “Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells,” Journal of Cell Biology, vol. 148, no. 5, pp. 997–1007, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Kusumi, H. Ike, C. Nakada, K. Murase, and T. Fujiwara, “Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules,” Seminars in Immunology, vol. 17, no. 1, pp. 3–21, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. F. Hancock, “Lipid rafts: contentious only from simplistic standpoints,” Nature Reviews Molecular Cell Biology, vol. 7, no. 6, pp. 456–462, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. L. J. Pike, “Lipid rafts: heterogeneity on the high seas,” Biochemical Journal, vol. 378, no. 2, pp. 281–292, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. A. M. Gilfillan and C. Tkaczyk, “Integrated signalling pathways for mast-cell activation,” Nature Reviews Immunology, vol. 6, no. 3, pp. 218–230, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. K. N. Rao and M. A. Brown, “Mast cells: multifaceted immune cells with diverse roles in health and disease,” Annals of the New York Academy of Sciences, vol. 1143, pp. 83–104, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. N. H. Fifadara, F. Beer, S. Ono, and S. J. Ono, “Interaction between activated chemokine receptor 1 and FcεRI at membrane rafts promotes communication and F-actin-rich cytoneme extensions between mast cells,” International Immunology, vol. 22, no. 2, pp. 113–128, 2010. View at Publisher · View at Google Scholar · View at PubMed
  9. J. Kalesnikoff and S. J. Galli, “New developments in mast cell biology,” Nature Immunology, vol. 9, no. 11, pp. 1215–1223, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. A. Beaven, “Our perception of the mast cell from Paul Ehrlich to now,” European Journal of Immunology, vol. 39, no. 1, pp. 11–25, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. E. Crivellato, D. Ribatti, F. Mallardi, and C. A. Beltrami, “The mast cell: a multifunctional effector cell,” Advances in Clinical Pathology, vol. 7, no. 1, pp. 13–26, 2003. View at Google Scholar · View at Scopus
  12. P. A. de Almeida Buranello,, M. R. Moulin, D. A. Souza, M. C. Jamur, M. C. Roque-Barreira, and C. Oliver, “The lectin ArtinM induces recruitment of rat mast cells from the bone marrow to the peritoneal cavity,” PLoS One, vol. 5, no. 3, article e9776, 2010. View at Google Scholar
  13. D. Von Bubnoff, N. Novak, S. Kraft, and T. Bieber, “The central role of FcεRi in allergy,” Clinical and Experimental Dermatology, vol. 28, no. 2, pp. 184–187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Metzger, “The receptor with high affinity for IgE,” Immunological Reviews, no. 125, pp. 37–48, 1992. View at Google Scholar · View at Scopus
  15. J. P. Kinet, “The high-affinity IgE receptor (FcεRI): from physiology to pathology,” Annual Review of Immunology, vol. 17, pp. 931–972, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. K. Simons and D. Toomre, “Lipid rafts and signal transduction,” Nature Reviews, vol. 1, no. 1, pp. 31–39, 2000. View at Google Scholar · View at Scopus
  17. J. Rivera, “Molecular adapters in FcεRI signaling and the allergic response,” Current Opinion in Immunology, vol. 14, no. 6, pp. 688–693, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. S. Nadler, S. A. Matthews, H. Turner, and J. P. Kinet, “Signal transduction by the high-affinity immunoglobulin E receptor FcεRI: coupling form to function,” Advances in Immunology, vol. 76, pp. 325–355, 2000. View at Google Scholar · View at Scopus
  19. J. Rivera, R. Arudchandran, C. Gonzalez-Espinosa, T. S. Manetz, and S. Xirasagar, “A perspective: regulation of IgE receptor-mediated mast cell responses by a LAT-organized plasma membrane-localized signaling complex,” International Archives of Allergy and Immunology, vol. 124, no. 1–3, pp. 137–141, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Kimura, M. Hisano, Y. Inoue, and M. Adachi, “Tyrosine phosphorylation of the linker for activator of T cells in mast cells by stimulation with the high affinity IgE receptor,” Immunology Letters, vol. 75, no. 2, pp. 123–129, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. R. P. Siraganian, “Mast cell signal transduction from the high-affinity IgE receptor,” Current Opinion in Immunology, vol. 15, no. 6, pp. 639–646, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Oliver, A. Fujimura, A. M. M. Silveira e Souza, R. O. De Castro, R. P. Siraganian, and M. C. Jamur, “Mast cell-specific gangliosides and FcεRI follow the same endocytic pathway from lipid rafts in RBL-2H3 cells,” Journal of Histochemistry and Cytochemistry, vol. 55, no. 4, pp. 315–325, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. L. J. Pike, “Rafts defined: a report on the Keystone symposium on lipid rafts and cell function,” Journal of Lipid Research, vol. 47, no. 7, pp. 1597–1598, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. K. Simons and M. J. Gerl, “Revitalizing membrane rafts: new tools and insights,” Nature Reviews Molecular Cell Biology, vol. 11, no. 10, pp. 688–699, 2010. View at Publisher · View at Google Scholar · View at PubMed
  25. K. Simons and E. Ikonen, “Functional rafts in cell membranes,” Nature, vol. 387, no. 6633, pp. 569–572, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. A. Melkonian, A. G. Ostermeyer, J. Z. Chen, M. G. Roth, and D. A. Brown, “Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated,” Journal of Biological Chemistry, vol. 274, no. 6, pp. 3910–3917, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. L. J. Pike, “Lipid rafts: bringing order to chaos,” Journal of Lipid Research, vol. 44, no. 4, pp. 655–667, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. L. Rajendran and K. Simons, “Lipid rafts and membrane dynamics,” Journal of Cell Science, vol. 118, no. 6, pp. 1099–1102, 2005. View at Publisher · View at Google Scholar · View at PubMed
  29. Á. Szöor, J. Szöllosi, and G. Vereb, “Rafts and the battleships of defense: the multifaceted microdomains for positive and negative signals in immune cells,” Immunology Letters, vol. 130, no. 1-2, pp. 2–12, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. P. S. Niemelä, M. T. Hyvönen, and I. Vattulainen, “Influence of chain length and unsaturation on sphingomyelin bilayers,” Biophysical Journal, vol. 90, no. 3, pp. 851–863, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. D. Lingwood and K. Simons, “Lipid rafts as a membrane-organizing principle,” Science, vol. 327, no. 5961, pp. 46–50, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. K. Simons and W. L. C. Vaz, “Model systems, lipid rafts, and cell membranes,” Annual Review of Biophysics and Biomolecular Structure, vol. 33, pp. 269–295, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. X. M. Li, M. M. Momsen, J. M. Smaby, H. L. Brockman, and R. E. Brown, “Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins,” Biochemistry, vol. 40, no. 20, pp. 5954–5963, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. D. A. Brown and J. K. Rose, “Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface,” Cell, vol. 68, no. 3, pp. 533–544, 1992. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Edidin, “The state of lipid rafts: from model membranes to cells,” Annual Review of Biophysics and Biomolecular Structure, vol. 32, pp. 257–283, 2003. View at Publisher · View at Google Scholar · View at PubMed
  36. H.-J. Kaiser, D. Lingwood, I. Levental et al., “Order of lipid phases in model and plasma membranes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 39, pp. 16645–16650, 2009. View at Publisher · View at Google Scholar · View at PubMed
  37. A. M. Davey, R. P. Walvick, Y. Liu, A. A. Heikal, and E. D. Sheets, “Membrane order and molecular dynamics associated with IgE receptor cross-linking in mast cells,” Biophysical Journal, vol. 92, no. 1, pp. 343–355, 2007. View at Publisher · View at Google Scholar · View at PubMed
  38. S. Mayor and F. R. Maxfield, “Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment,” Molecular Biology of the Cell, vol. 6, no. 7, pp. 929–944, 1995. View at Google Scholar
  39. K. A. Field, D. Holowka, and B. Baird, “Structural aspects of the association of FcεRI with detergent-resistant membranes,” Journal of Biological Chemistry, vol. 274, no. 3, pp. 1753–1758, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Parolini, S. Topa, M. Sorice et al., “Phorbol ester-induced disruption of the CD4-Lck complex occurs within a detergent-resistant microdomain of the plasma membrane: involvement of the translocation of activated protein kinase C isoforms,” Journal of Biological Chemistry, vol. 274, no. 20, pp. 14176–14187, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Montixi, C. Langlet, A. M. Bernard et al., “Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains,” EMBO Journal, vol. 17, no. 18, pp. 5334–5348, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. Z. Surviladze, L. Dráberová, L. Kubínová, and P. Dráber, “Functional heterogeneity of Thy-1 membrane microdomains in rat basophilic leukemia cells,” European Journal of Immunology, vol. 28, no. 6, pp. 1847–1858, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Ilangumaran, S. Arni, G. Van Echten-Deckert, B. Borisch, and D. C. Hoessli, “Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes,” Molecular Biology of the Cell, vol. 10, no. 4, pp. 891–905, 1999. View at Google Scholar · View at Scopus
  44. T. Harder and M. Kuhn, “Selective accumulation of raft-associated membrane protein LAT in T cell receptor signaling assemblies,” Journal of Cell Biology, vol. 151, no. 2, pp. 199–207, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Yamanaka, A. Straumfors, H. C. Morton, O. Fausa, P. Brandtzaeg, and I. N. Farstad, “Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein,” European Journal of Immunology, vol. 31, no. 1, pp. 1–10, 2001. View at Publisher · View at Google Scholar
  46. T. Baumgart, A. T. Hammond, P. Sengupta et al., “Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3165–3170, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. P. Sengupta, A. Hammond, D. Holowka, and B. Baird, “Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles,” Biochimica et Biophysica Acta, vol. 1778, no. 1, pp. 20–32, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. D. Lingwood, J. Ries, P. Schwille, and K. Simons, “Plasma membranes are poised for activation of raft phase coalescence at physiological temperature,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 29, pp. 10005–10010, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. S. A. Johnson, B. M. Stinson, M. S. Go et al., “Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles,” Biochimica et Biophysica Acta, vol. 1798, no. 7, pp. 1427–1435, 2010. View at Publisher · View at Google Scholar · View at PubMed
  50. R. Varma and S. Mayor, “GPI-anchored proteins are organized in submicron domains at the cell surface,” Nature, vol. 394, no. 6695, pp. 798–801, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. B. S. Wilson, J. R. Pfeiffer, and J. M. Oliver, “Observing FcεRI signaling from the inside of the mast cell membrane,” Journal of Cell Biology, vol. 149, no. 5, pp. 1131–1142, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. R. G. Parton and A. A. Richards, “Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms,” Traffic, vol. 4, no. 11, pp. 724–738, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Vereb, J. Matkó, and J. Szöllösi, “Cytometry of fluorescence resonance energy transfer,” Methods in Cell Biology, vol. 2004, no. 75, pp. 105–152, 2004. View at Google Scholar · View at Scopus
  54. A. Bíró, L. Cervenak, A. Balogh et al., “Novel anti-cholesterol monoclonal immunoglobulin G antibodies as probes and potential modulators of membrane raft-dependent immune functions,” Journal of Lipid Research, vol. 48, no. 1, pp. 19–29, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. I. Gombos, G. Steinbach, I. Pomozi et al., “Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells,” Cytometry A, vol. 73, no. 3, pp. 220–229, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. Ü. Coskun and K. Simons, “Membrane rafting: from apical sorting to phase segregation,” FEBS Letters, vol. 584, no. 9, pp. 1685–1693, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. T. Harder, P. Scheiffele, P. Verkade, and K. Simons, “Lipid domain structure of the plasma membrane revealed by patching of membrane components,” Journal of Cell Biology, vol. 141, no. 4, pp. 929–942, 1998. View at Publisher · View at Google Scholar · View at Scopus
  58. R. G. Parton and K. Simons, “The multiple faces of caveolae,” Nature Reviews Molecular Cell Biology, vol. 8, no. 3, pp. 185–194, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. W. Rodgers and M. Glaser, “Distributions of proteins and lipids in the erythrocyte membrane,” Biochemistry, vol. 32, no. 47, pp. 12591–12598, 1993. View at Publisher · View at Google Scholar · View at Scopus
  60. P. S. Kabouridis, A. I. Magee, and S. C. Ley, “S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes,” EMBO Journal, vol. 16, no. 16, pp. 4983–4998, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. W. Zhang, R. P. Trible, and L. E. Samelson, “LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation,” Immunity, vol. 9, no. 2, pp. 239–246, 1998. View at Google Scholar · View at Scopus
  62. R. Xavier, T. Brennan, Q. Li, C. McCormack, and B. Seed, “Membrane compartmentation is required for efficient T cell activation,” Immunity, vol. 8, no. 6, pp. 723–732, 1998. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Roy, R. Luetterforst, A. Harding et al., “Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains,” Nature Cell Biology, vol. 1, no. 2, pp. 98–105, 1999. View at Google Scholar · View at Scopus
  64. A. Viola, S. Schroeder, Y. Sakakibara, and A. Lanzavecchia, “T lymphocyte costimulation mediated by reorganization of membrane microdomains,” Science, vol. 283, no. 5402, pp. 680–682, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Brdička, D. Pavlištová, A. Leo et al., “Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase Csk and is involved in regulation of T cell activation,” Journal of Experimental Medicine, vol. 191, no. 9, pp. 1591–1604, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. A. J. Hunter, N. Ottoson, N. Boerth, G. A. Koretzky, and Y. Shimizu, “Cutting edge: a novel function for the SLAP-130/FYB adapter protein in β integrin signaling and T lymphocyte migration,” Journal of Immunology, vol. 164, no. 3, pp. 1143–1147, 2000. View at Google Scholar · View at Scopus
  67. R. M. Young, D. Holowka, and B. Baird, “A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation,” Journal of Biological Chemistry, vol. 278, no. 23, pp. 20746–20752, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. K. A. Field, D. Holowka, and B. Baird, “FcεRI-mediated recruitment of p53/56(lyn) to detergent-resistant membrane domains accompanies cellular signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9201–9205, 1995. View at Publisher · View at Google Scholar · View at Scopus
  69. M. C. Miceli, M. Moran, C. D. Chung, V. P. Patel, T. Low, and W. Zinnanti, “Co-stimulation and counter-stimulation: lipid raft clustering controls TCR signaling and functional outcomes,” Seminars in Immunology, vol. 13, no. 2, pp. 115–128, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. P. C. Cheng, B. K. Brown, W. Song, and S. K. Pierce, “Translocation of the B cell antigen receptor into lipid rafts reveals a novel step in signaling,” Journal of Immunology, vol. 166, no. 6, pp. 3693–3701, 2001. View at Google Scholar · View at Scopus
  71. D. Holowka and B. Baird, “FcεRI as a paradigm for a lipid raft-dependent receptor in hematopoietic cells,” Seminars in Immunology, vol. 13, no. 2, pp. 99–105, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. J. P. Kinet, G. Alcaraz, A. Leonard, S. Wank, and H. Metzger, “Dissociation of the receptor for immunoglobulin E in mild detergents,” Biochemistry, vol. 24, no. 15, pp. 4117–4124, 1985. View at Google Scholar · View at Scopus
  73. C. Furne, V. Corset, Z. Hérincs, N. Cahuzac, A. O. Hueber, and P. Mehlen, “The dependence receptor DCC requires lipid raft localization for cell death signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 11, pp. 4128–4133, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. A. Koenig, J. Q. Russell, W. A. Rodgers, and R. C. Budd, “Spatial differences in active caspase-8 defines its role in T-cell activation versus cell death,” Cell Death and Differentiation, vol. 15, no. 11, pp. 1701–1711, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. S. Hakomori -i, “Structure and function of sphingoglycolipids in transmembrane signalling and cell-cell interactions,” Biochemical Society Transactions, vol. 21, no. 3, pp. 583–595, 1993. View at Google Scholar · View at Scopus
  76. D. A. Brown and E. London, “Functions of lipid rafts in biological membranes,” Annual Review of Cell and Developmental Biology, vol. 14, pp. 111–136, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. P. Dráber and L. Dráberová, “Lipid rafts in mast cell signaling,” Molecular Immunology, vol. 38, no. 16–18, pp. 1247–1252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Kolter, R. L. Proia, and K. Sandhoff, “Combinatorial ganglioside biosynthesis,” Journal of Biological Chemistry, vol. 277, no. 29, pp. 25859–25862, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. A. M. M. Silveira e Souza, E. S. Trindade, M. C. Jamur, and C. Oliver, “Gangliosides are important for the preservation of the structure and organization of RBL-2H3 mast cells,” Journal of Histochemistry and Cytochemistry, vol. 58, no. 1, pp. 83–93, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. S. J. Galli, “New insights into ‘The riddle of the mast cells’: microenvironmental regulation of mast cell development and phenotypic heterogeneity,” Laboratory Investigation, vol. 62, no. 1, pp. 5–33, 1990. View at Google Scholar
  81. C. Oliver, N. Sahara, S. Kitani, A. R. Robbins, L. M. Mertz, and R. P. Siraganian, “Binding of monoclonal antibody AA4 to gangliosides on rat basophilic leukemia cells produces changes similar to those seen with Fcε receptor activation,” Journal of Cell Biology, vol. 116, no. 3, pp. 635–646, 1992. View at Google Scholar
  82. L. C. J. Yong, “The mast cell: origin, morphology, distribution, and function,” Experimental and Toxicologic Pathology, vol. 49, no. 6, pp. 409–424, 1997. View at Google Scholar · View at Scopus
  83. D. D. Metcalfe, D. Baram, and Y. A. Mekori, “Mast cells,” Physiological Reviews, vol. 77, no. 4, pp. 1033–1079, 1997. View at Google Scholar · View at Scopus
  84. E. Passante and N. Frankish, “The RBL-2H3 cell line: its provenance and suitability as a model for the mast cell,” Inflammation Research, vol. 58, no. 11, pp. 737–745, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. N. Guo, G. R. Her, V. N. Reinhold, M. J. Brennan, R. P. Siraganian, and V. Ginsburg, “Monoclonal antibody AA4, which inhibits binding of IgE to high affinity receptors on rat basophilic leukemia cells, binds to novel α-galactosyl derivatives of gangliosides G(D1b),” Journal of Biological Chemistry, vol. 264, no. 22, pp. 13267–13272, 1989. View at Google Scholar
  86. E. D. Sheets, D. Holowka, and B. Baird, “Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcεRI and their association with detergent-resistant membranes,” Journal of Cell Biology, vol. 145, no. 4, pp. 877–887, 1999. View at Publisher · View at Google Scholar · View at Scopus
  87. A. M. M. Silveira e Souza, V. M. Mazucato, R. O. de Castro et al., “The α-galactosyl derivatives of ganglioside GD are essential for the organization of lipid rafts in RBL-2H3 mast cells,” Experimental Cell Research, vol. 314, no. 13, pp. 2515–2528, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. N. Kato, M. Nakanishi, and N. Hirashima, “Cholesterol depletion inhibits store-operated calcium currents and exocytotic membrane fusion in RBL-2H3 cells,” Biochemistry, vol. 42, no. 40, pp. 11808–11814, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. D. Holowka, E. D. Sheets, and B. Baird, “Interactions between FcεRI and lipid raft components are regulated by the actin cytoskeleton,” Journal of Cell Science, vol. 113, no. 6, pp. 1009–1019, 2000. View at Google Scholar · View at Scopus
  90. I. Levitan and K. J. Gooch, “Lipid rafts in membrane-cytoskeleton interactions and control of cellular biomechanics: actions of oxLDL,” Antioxidants and Redox Signaling, vol. 9, no. 9, pp. 1519–1534, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. L. J. Pike, “The challenge of lipid rafts,” Journal of Lipid Research, vol. 50, pp. S323–S328, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. S. C. Bunnell, V. Kapoor, R. P. Trible, W. Zhang, and L. E. Samelson, “Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT,” Immunity, vol. 14, no. 3, pp. 315–329, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Barda-Saad, A. Braiman, R. Titerence, S. C. Bunnell, V. A. Barr, and L. E. Samelson, “Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton,” Nature Immunology, vol. 6, no. 1, pp. 80–89, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. T. S. Gomez, M. J. Hamann, S. McCarney et al., “Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse,” Nature Immunology, vol. 6, no. 3, pp. 261–270, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. P. F. Lenne, L. Wawrezinieck, F. Conchonaud et al., “Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork,” EMBO Journal, vol. 25, no. 14, pp. 3245–3256, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. X. Han, N. L. Smith, D. Sil, D. A. Holowka, F. W. McLafferty, and B. A. Baird, “IgE receptor-mediated alteration of membrane-cytoskeleton interactions revealed by mass spectrometric analysis of detergent-resistant membranes,” Biochemistry, vol. 48, no. 27, pp. 6540–6550, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. G. R. Chichili and W. Rodgers, “Clustering of membrane raft proteins by the actin cytoskeleton,” Journal of Biological Chemistry, vol. 282, no. 50, pp. 36682–36691, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. G. R. Chichili and W. Rodgers, “Cytoskeleton-membrane interactions in membrane raft structure,” Cellular and Molecular Life Sciences, vol. 66, no. 14, pp. 2319–2328, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. H. L. Yin and P. A. Janmey, “Phosphoinositide regulation of the actin cytoskeleton,” Annual Review of Physiology, vol. 65, pp. 761–789, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. M. P. Czech, “Signal transduction: lipid rafts and insulin action,” Nature, vol. 407, no. 6801, pp. 147–148, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. J. E. Harlan, P. J. Hajduk, H. S. Yoon, and S. W. Fesik, “Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate,” Nature, vol. 371, no. 6493, pp. 168–170, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. P. Várnai and T. Balla, “Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[H]inositol-labeled phosphoinositide pools,” Journal of Cell Biology, vol. 143, no. 2, pp. 501–510, 1998. View at Publisher · View at Google Scholar · View at Scopus
  103. G. Lemon, W. G. Gibson, and M. R. Bennett, “Metabotropic receptor activation, desensitization and sequestration - I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor activation,” Journal of Theoretical Biology, vol. 223, no. 1, pp. 93–111, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  104. N. Funatsu, H. Kumanogoh, Y. Sokawa, and S. Maekawa, “Identification of gelsolin as an actin regulatory component in a Triton insoluble low density fraction (raft) of newborn bovine brain,” Neuroscience Research, vol. 36, no. 4, pp. 311–317, 2000. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Ilschner and R. Brandt, “The transition of microglia to a ramified phenotype is associated with the formation of stable acetylated and detyrosinated microtubules,” Glia, vol. 18, no. 2, pp. 129–140, 1996. View at Publisher · View at Google Scholar · View at Scopus
  106. C. Conde and A. Cáceres, “Microtubule assembly, organization and dynamics in axons and dendrites,” Nature Reviews Neuroscience, vol. 10, no. 5, pp. 319–332, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. M. F. Tsan and R. D. Berlin, “Effect of phagocytosis on membrane transport of nonelectrolytes,” Journal of Experimental Medicine, vol. 134, no. 4, pp. 1016–1035, 1971. View at Google Scholar · View at Scopus
  108. G. M. Edelman, I. Yahara, and J. L. Wang, “Receptor mobility and receptor-cytoplasmic interactions in lymphocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 70, no. 5, pp. 1442–1446, 1973. View at Google Scholar · View at Scopus
  109. J. M. Oliver, T. E. Ukena, and R. D. Berlin, “Effects of phagocytosis and colchicine on the distribution of lectin binding sites on cell surfaces,” Proceedings of the National Academy of Sciences of the United States of America, vol. 71, no. 2, pp. 394–398, 1974. View at Google Scholar · View at Scopus
  110. B. P. Ceresa and S. L. Schmid, “Regulation of signal transduction by endocytosis,” Current Opinion in Cell Biology, vol. 12, no. 2, pp. 204–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. R. F. Stump, J. R. Pfeiffer, J. Seagrave, and J. M. Oliver, “Mapping gold-labeled IgE receptors on mast cells by scanning electron microscopy: receptor distributions revealed by silver enhancement, backscattered electron imaging, and digital image analysis,” Journal of Histochemistry and Cytochemistry, vol. 36, no. 5, pp. 493–502, 1988. View at Google Scholar · View at Scopus
  112. S. Y. Mao, J. R. Pfeiffer, J. M. Oliver, and H. Metzger, “Effects of subunit mutation on the localization to coated pits and internalization of cross-linked IgE-receptor complexes,” Journal of Immunology, vol. 151, no. 5, pp. 2760–2774, 1993. View at Google Scholar · View at Scopus
  113. J. S. Bonifacino and L. M. Traub, “Signals for sorting of transmembrane proteins to endosomes and lysosomes,” Annual Review of Biochemistry, vol. 72, pp. 395–447, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. B. S. Wilson, S. L. Steinberg, K. Liederman et al., “Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes,” Molecular Biology of the Cell, vol. 15, no. 6, pp. 2580–2592, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. B. S. Wilson, J. R. Pfeiffer, Z. Surviladze, E. A. Gaudet, and J. M. Oliver, “High resolution mapping of mast cell membranes reveals primary and secondary domains of FcεRI and LAT,” Journal of Cell Biology, vol. 154, no. 3, pp. 645–658, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. V. M. Mazucato, A. M. Silveira e Souza, L. M. Nicoletti, M. C. Jamur, and C. Oliver, “GD1b-derived gangliosides modulate FcεRI endocytosis,” Journal of Histochemistry and Cytochemistry. In press.
  117. P. S. McPherson, B. K. Kay, and N. K. Hussain, “Signaling on the endocytic pathway,” Traffic, vol. 2, no. 6, pp. 375–384, 2001. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Molfetta, F. Gasparrini, A. Santoni, and R. Paolini, “Ubiquitination and endocytosis of the high affinity receptor for IgE,” Molecular Immunology, vol. 47, no. 15, pp. 2427–2434, 2010. View at Publisher · View at Google Scholar · View at PubMed
  119. F. Lafont and K. Simons, “Raft-partitioning of the ubiquitin ligases Cbl and Nedd4 upon IgE-triggered cell signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3180–3184, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. K. F. Harvey and S. Kumar, “Nedd4-like proteins: an emerging family of ubiquitin-protein ligases implicated in diverse cellular functions,” Trends in Cell Biology, vol. 9, no. 5, pp. 166–169, 1999. View at Publisher · View at Google Scholar · View at Scopus
  121. P. S. Freemont, “Ubiquitination: RING for destruction?” Current Biology, vol. 10, no. 2, pp. R84–R87, 2000. View at Google Scholar · View at Scopus
  122. Y. Ota, L. O. Beitz, A. M. Scharenberg, J. A. Donovan, J. P. Kinet, and L. E. Samelson, “Characterization of Cbl tyrosine phosphorylation and a Cbl-Syk complex in RBL-2H3 cells,” Journal of Experimental Medicine, vol. 184, no. 5, pp. 1713–1723, 1996. View at Google Scholar · View at Scopus
  123. Y. Ota and L. E. Samelson, “The product of the proto-oncogene c-cbl: a negative regulator of the Syk tyrosine kinase,” Science, vol. 276, no. 5311, pp. 418–420, 1997. View at Publisher · View at Google Scholar · View at Scopus
  124. R. Molfetta, F. Gasparrini, G. Peruzzi et al., “Lipid raft-dependent FcεRI ubiquitination regulates receptor endocytosis through the action of ubiquitin binding adaptors,” PLoS One, vol. 4, no. 5, article e5604, 2009. View at Publisher · View at Google Scholar · View at PubMed
  125. R. Molfetta, F. Gasparrini, A. Santoni, and R. Paolini, “Ubiquitination and endocytosis of the high affinity receptor for IgE,” Molecular Immunology, vol. 47, no. 15, pp. 2427–2434, 2010. View at Publisher · View at Google Scholar · View at PubMed
  126. K. A. Field, J. R. Apgar, E. Hong-Geller, R. P. Siraganian, B. Baird, and D. Holowka, “Mutant RBL mast cells defective in FcεRI signaling and lipid raft biosynthesis are reconstituted by activated Rho-family GTPases,” Molecular Biology of the Cell, vol. 11, no. 10, pp. 3661–3673, 2000. View at Google Scholar
  127. H. Metzger, “It's spring, and thoughts turn to ... allergies,” Cell, vol. 97, no. 3, pp. 287–290, 1999. View at Google Scholar · View at Scopus
  128. N. Hanai, G. A. Nores, C. MacLeod, C. R. Torres-Mendez, and S. Hakomori, “Ganglioside-mediated modulation of cell growth. Specific effects of GM and lyso-GM in tyrosine phosphorylation of the epidermal growth factor receptor,” Journal of Biological Chemistry, vol. 263, no. 22, pp. 10915–10921, 1988. View at Google Scholar · View at Scopus
  129. F. M. B. Weis and R. J. Davis, “Regulation of epidermal growth factor receptor signal transduction. Role of gangliosides,” Journal of Biological Chemistry, vol. 265, no. 20, pp. 12059–12066, 1990. View at Google Scholar · View at Scopus
  130. B. Baird, E. D. Sheets, and D. Holowka, “How does the plasma membrane participate in cellular signaling by receptors for immunoglobulin E?” Biophysical Chemistry, vol. 82, no. 2-3, pp. 109–119, 1999. View at Publisher · View at Google Scholar · View at Scopus
  131. X. Q. Wang, P. Sun, and A. S. Paller, “Ganglioside modulation regulates epithelial cell adhesion and spreading via ganglioside-specific effects on signaling,” Journal of Biological Chemistry, vol. 277, no. 43, pp. 40410–40419, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. R. F. Stump, J. R. Pfeiffer, M. C. Schneebeck, J. C. Seagrave, and J. M. Oliver, “Mapping gold-labeled receptors on cell surfaces by backscattered electron imaging and digital image analysis: studies of the IgE receptor on mast cells,” American Journal of Anatomy, vol. 185, no. 2-3, pp. 128–141, 1989. View at Google Scholar · View at Scopus
  133. D. A. Brown and E. London, “Structure and function of sphingolipid- and cholesterol-rich membrane rafts,” Journal of Biological Chemistry, vol. 275, no. 23, pp. 17221–17224, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. T. P. Stauffer and T. Meyer, “Compartmentalized IgE receptor-mediated signal transduction in living cells,” Journal of Cell Biology, vol. 139, no. 6, pp. 1447–1454, 1997. View at Publisher · View at Google Scholar · View at Scopus
  135. P. S. Pyenta, D. Holowka, and B. Baird, “Cross-correlation analysis of inner-leaflet-anchored green fluorescent protein co-redistributed with IgE receptors and outer leaflet lipid raft components,” Biophysical Journal, vol. 80, no. 5, pp. 2120–2132, 2001. View at Google Scholar · View at Scopus
  136. N. Kato, M. Nakanishi, and N. Hirashima, “Flotillin-1 regulates IgE receptor-mediated signaling in rat basophilic leukemia (RBL-2H3) cells,” Journal of Immunology, vol. 177, no. 1, pp. 147–154, 2006. View at Google Scholar · View at Scopus
  137. T. Yamashita, T. Yamaguchi, K. Murakami, and S. Nagasawa, “Detergent-resistant membrane domains are required for mast cell activation but dispensable for tyrosine phosphorylation upon aggregation of the high affinity receptor for IgE,” Journal of Biochemistry, vol. 129, no. 6, pp. 861–868, 2001. View at Google Scholar · View at Scopus
  138. N. H. Fifadara, C. C. Aye, S. K. Raghuwanshi, R. M. Richardson, and S. J. Ono, “CCR1 expression and signal transduction by murine BMMC results in secretion of TNF-α, TGFβ-1 and IL-6,” International Immunology, vol. 21, no. 8, pp. 991–1001, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  139. D. Volonté, F. Galbiati, S. Li, K. Nishiyama, T. Okamoto, and M. P. Lisanti, “Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo: characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe,” Journal of Biological Chemistry, vol. 274, no. 18, pp. 12702–12709, 1999. View at Publisher · View at Google Scholar · View at Scopus
  140. P. E. Bickel, P. E. Scherer, J. E. Schnitzer, P. Oh, M. P. Lisanti, and H. F. Lodish, “Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins,” Journal of Biological Chemistry, vol. 272, no. 21, pp. 13793–13802, 1997. View at Publisher · View at Google Scholar · View at Scopus
  141. M. L. Stracke, L. K. Basciano, and R. P. Siraganian, “Binding properties and histamine release in variants of rat basophilic leukemia cells with changes in the IgE receptor,” Immunology Letters, vol. 14, no. 4, pp. 287–292, 1987. View at Google Scholar · View at Scopus
  142. V. Stephan, N. Guo, V. Ginsburg, and R. P. Siraganian, “Immunoprecipitation of membrane proteins from rat basophilic leukemia cells by the antiganglioside monoclonal antibody AA4,” Journal of Immunology, vol. 146, no. 12, pp. 4271–4277, 1991. View at Google Scholar · View at Scopus
  143. K. Minoguchi, W. D. Swaim, E. H. Berenstein, and R. P. Siraganian, “Src family tyrosine kinase p53/56lyn, a serine kinase and FcεRI associate with α-galactosyl derivatives of ganglioside GDlb in rat basophilic leukemia RBL-2H3 cells,” Journal of Biological Chemistry, vol. 269, no. 7, pp. 5249–5254, 1994. View at Google Scholar
  144. W. D. Swaim, K. Minoguchi, C. Oliver et al., “The anti-ganglioside monoclonal antibody AA4 induces protein tyrosine phosphorylations, but not degranulation, in rat basophilic leukemia cells,” Journal of Biological Chemistry, vol. 269, no. 30, pp. 19466–19473, 1994. View at Google Scholar · View at Scopus
  145. M. C. Jamur, A. C. G. Grodzki, A. N. Moreno, W. D. Swaim, R. P. Siraganian, and C. Oliver, “Immunomagnetic isolation of rat bone marrow-derived and peritoneal mast cells,” Journal of Histochemistry and Cytochemistry, vol. 45, no. 12, pp. 1715–1722, 1997. View at Google Scholar · View at Scopus
  146. M. C. Jamur, A. C. G. Grodzki, A. N. Moreno et al., “Identification and isolation of rat bone marrow-derived mast cells using the mast cell-specific monoclonal antibody AA4,” Journal of Histochemistry and Cytochemistry, vol. 49, no. 2, pp. 219–228, 2001. View at Google Scholar · View at Scopus
  147. C. D. Faraco, I. Vugman, R. P. Siraganian, M. C. Jamur, and C. Oliver, “Immunocytochemical identification of immature rat peritoneal mast cells using a monoclonal antibody specific for rat mast cells,” Acta Histochemica, vol. 99, no. 1, pp. 23–27, 1997. View at Google Scholar · View at Scopus
  148. P. Valent, C. Sillaber, and P. Bettelheim, “The growth and differentiation of mast cells,” Progress in Growth Factor Research, vol. 3, no. 1, pp. 27–41, 1991. View at Google Scholar
  149. M. C. Jamur, A. C. G. Grodzki, E. H. Berenstein, M. M. Hamawy, R. P. Siraganian, and C. Oliver, “Identification and characterization of undifferentiated mast cells in mouse bone marrow,” Blood, vol. 105, no. 11, pp. 4282–4289, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus