Table of Contents Author Guidelines Submit a Manuscript
Journal of Lipids
Volume 2012, Article ID 608580, 5 pages
http://dx.doi.org/10.1155/2012/608580
Research Article

Paraoxonase 1 Phenotype and Mass in South Asian versus Caucasian Renal Transplant Recipients

1Department of Medicine, Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada M5B 1W8
2Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada M5B 1W8
3Division of Cardiology, Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Canada

Received 3 January 2012; Revised 9 March 2012; Accepted 11 March 2012

Academic Editor: Mira Rosenblat

Copyright © 2012 Philip W. Connelly et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. V. Ramesh Prasad, S. K. Vangala, S. A. Silver et al., “South Asian ethnicity as a risk factor for major adverse cardiovascular events after renal transplantation,” Clinical Journal of the American Society of Nephrology, vol. 6, no. 1, pp. 204–211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. G. V. Ramesh Prasad, L. Vorobeichik, M. M. Nash et al., “Lower total and percent of high-molecular weight adiponectin concentration in South Asian kidney transplant recipients,” Clinical Kidney Journal, vol. 5, pp. 124–129, 2012. View at Publisher · View at Google Scholar
  3. P. W. Connelly, B. Zinman, G. F. Maguire et al., “Association of the novel cardiovascular risk factors paraoxonase 1 and cystatin C in type 2 diabetes,” Journal of Lipid Research, vol. 50, no. 6, pp. 1216–1222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. W. Connelly, G. F. Maguire, C. M. Picardo, J. F. Teiber, and D. Draganov, “Development of an immunoblot assay with infrared fluorescence to quantify paraoxonase 1 in serum and plasma,” Journal of Lipid Research, vol. 49, no. 1, pp. 245–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. Richter, G. P. Jarvik, and C. E. Furlong, “Paraoxonase 1 (PON1) status and substrate hydrolysis,” Toxicology and Applied Pharmacology, vol. 235, no. 1, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Gupta, S. Singh, V. N. Maturu, Y. P. Sharma, and K. D. Gill, “Paraoxonase 1 (PON1) polymorphisms, haplotypes and activity in predicting CAD risk in North-West Indian Punjabis,” PLoS ONE, vol. 6, no. 5, Article ID e17805, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Gupta, K. Gill, and S. Singh, “Paraoxonases: structure, gene polymorphism & role in coronary artery disease,” Indian Journal of Medical Research, vol. 130, no. 4, pp. 361–368, 2009. View at Google Scholar · View at Scopus
  8. M. Rosenblat and M. Aviram, “Paraoxonases role in the prevention of cardiovascular diseases,” BioFactors, vol. 35, no. 1, pp. 98–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. L. P. Précourt, D. Amre, M. C. Denis et al., “The three-gene paraoxonase family: physiologic roles, actions and regulation,” Atherosclerosis, vol. 214, no. 1, pp. 20–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Camps, J. Marsillach, and J. Joven, “Measurement of serum paraoxonase-1 activity in the evaluation of liver function,” World Journal of Gastroenterology, vol. 15, no. 16, pp. 1929–1933, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Kannampuzha, P. B. Darling, G. F. Maguire et al., “Paraoxonase 1 arylesterase activity and mass are reduced and inversely related to C-reactive protein in patients on either standard or home nocturnal hemodialysis,” Clinical Nephrology, vol. 73, no. 2, pp. 131–138, 2010. View at Google Scholar · View at Scopus
  12. A. Gugliucci, E. Kinugasa, K. Kotani, R. Caccavello, and S. Kimura, “Serum paraoxonase 1 (PON1) lactonase activity is lower in end-stage renal disease patients than in healthy control subjects and increases after hemodialysis,” Clinical Chemistry and Laboratory Medicine, vol. 49, no. 1, pp. 61–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Gungor, F. Kircelli, M. S. Demirci et al., “Serum paraoxonase 1 activity predicts arterial stiffness in renal transplant recipients,” Journal of Atherosclerosis and Thrombosis, vol. 18, no. 10, pp. 901–905, 2011. View at Google Scholar
  14. K. D. Navab, O. Elboudwarej, M. Gharif et al., “Chronic inflammatory disorders and accelerated atherosclerosis: chronic kidney disease,” Current Pharmaceutical Design, vol. 17, pp. 17–20, 2011. View at Google Scholar
  15. N. D. Vaziri, K. Navab, P. Gollapudi et al., “Salutary effects of hemodialysis on low-density lipoprotein proinflammatory and high-density lipoprotein anti-inflammatory properties in patient with end-stage renal disease,” National Medical Association, vol. 103, pp. 524–533, 2011. View at Google Scholar
  16. G. P. Jarvik, T. S. Hatsukami, C. Carlson et al., “Paraoxonase activity, but not haplotype utilizing the linkage disequilibrium structure, predicts vascular disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 8, pp. 1465–1471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Paragh, I. Seres, M. Harangi et al., “Discordance in human paraoxonase-1 gene between phenotypes and genotypes in chronic kidney disease,” Nephron - Clinical Practice, vol. 113, no. 1, pp. c46–c53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Paragh, L. Asztalos, I. Seres et al., “Serum paraoxonase activity changes in uremic and kidney-transplanted patients,” Nephron, vol. 83, no. 2, pp. 126–131, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Bhaskar, M. Ganesan, G. R. Chandak et al., “Association of PON1 and APOA5 gene polymorphisms in a cohort of indian patients having coronary artery disease with and without type 2 diabetes,” Genetic Testing and Molecular Biomarkers, vol. 15, no. 7-8, pp. 507–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Boemi, I. Leviev, C. Sirolla, C. Pieri, M. Marra, and R. W. James, “Serum paraoxonase is reduced in type 1 diabetic patients compared to non-diabetic, first degree relatives; influence on the ability of HDL to protect LDL from oxidation,” Atherosclerosis, vol. 155, no. 1, pp. 229–235, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Ruiz, H. Blanche, R. W. James et al., “Gln-Arg192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes,” Lancet, vol. 346, no. 8979, pp. 869–872, 1995. View at Google Scholar · View at Scopus
  22. Y. Ikeda, T. Suehiro, T. Itahara et al., “Human serum paraoxonase concentration predicts cardiovascular mortality in hemodialysis patients,” Clinical Nephrology, vol. 67, no. 6, pp. 358–365, 2007. View at Google Scholar · View at Scopus
  23. O. Hasselwander, D. A. Savage, D. Mcmaster et al., “Paraoxonase polymorphisms are not associated with cardiovascular risk in renal transplant recipients,” Kidney International, vol. 56, no. 1, pp. 289–298, 1999. View at Publisher · View at Google Scholar · View at Scopus