Table of Contents
Journal of Metallurgy
Volume 2010 (2010), Article ID 145431, 9 pages
http://dx.doi.org/10.1155/2010/145431
Research Article

Temperature Control in Spark Plasma Sintering: An FEM Approach

1CNRS - CEMES (Centre d'Elaboration de Matériaux et d'Etudes Structurales), 31400 Toulouse, France
2Université Paul Sabatier, Toulouse, France

Received 29 September 2009; Accepted 6 January 2010

Academic Editor: Brij Kumar Dhindaw

Copyright © 2010 G. Molénat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, “The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method,” Journal of Materials Science, vol. 41, no. 3, pp. 763–777, 2006. View at Publisher · View at Google Scholar
  2. H. Conrad, A. F. Sprecher, W. D. Cao, and X. P. Lu, “Electroplasticity—the effect of electricity on the mechanical properties of metals,” Journal of Materials Science, vol. 42, no. 9, pp. 28–33, 1990. View at Google Scholar
  3. W. Yucheng and F. Zhengyi, “Study of temperature field in spark plasma sintering,” Materials Science and Engineering B, vol. 90, no. 1-2, pp. 34–37, 2002. View at Publisher · View at Google Scholar
  4. K. Matsugi, H. Kuramoto, T. Hatayama, and O. Yanagisawa, “temperature distribution at steady state under constant current discharge in spark sintering process of Ti and Al2O3 powders,” Journal of Materials Processing Technology, vol. 146, no. 2, pp. 274–281, 2004. View at Publisher · View at Google Scholar
  5. A. Zavaliangos, J. Zhang, M. Krammer, and J. R. Groza, “Temperature evolution during field activated sintering,” Materials Science and Engineering A, vol. 379, no. 1-2, pp. 218–228, 2004. View at Publisher · View at Google Scholar
  6. U. Anselmi-Tamburini, S. Gennari, J. E. Garay, and Z. A. Munir, “Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions,” Materials Science and Engineering A, vol. 394, no. 1-2, pp. 139–148, 2005. View at Publisher · View at Google Scholar
  7. K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. van der Biest, “Modelling of the temperature distribution during field assisted sintering,” Acta Materialia, vol. 53, no. 16, pp. 4379–4388, 2005. View at Publisher · View at Google Scholar
  8. G. Molénat, M. Thomas, J. Galy, and A. Couret, “Application of spark plasma sintering to titanium aluminide alloys,” Advanced Engineering Materials, vol. 9, no. 8, pp. 667–669, 2007. View at Publisher · View at Google Scholar
  9. H. Inui, M. H. Oh, A. Nakamura, and M. Yamaguchi, “Ordered domains in TiAl coexisting with Ti3Al in the lamellar structure of Ti-rich TiAl compounds,” Philosophical Magazine A, vol. 66, no. 4, pp. 539–555, 1992. View at Google Scholar
  10. S. Zghal, S. Naka, and A. Couret, “Quantitative TEM analysis of the lamellar microstructure in TiAl based alloys,” Acta Materialia, vol. 45, no. 7, pp. 3005–3015, 1997. View at Publisher · View at Google Scholar
  11. I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida, “Phase equilibria in the Ti-Al binary system,” Acta Materialia, vol. 48, no. 12, pp. 3113–3123, 2000. View at Publisher · View at Google Scholar
  12. A. Couret, G. Molénat, J. Galy, and M. Thomas, “Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering,” Intermetallics, vol. 16, no. 9, pp. 1134–1141, 2008. View at Publisher · View at Google Scholar
  13. http://www.hightempmetals.com/techdata/hitempInconel617data.php, 2008.
  14. http://www.hightempmetals.com/techdata/hitempInconel600data.php, 2008.
  15. M. Perez-Bravo, Nuevos intermetálicos gamma-TiAl: estudio y optimización microestructural para su aplicación en aeronáutica, Ph.D. thesis, Universidad del Pais Vasco (UPV/EHU), 2005.
  16. http://www.matweb.com/search/SpecificMaterial.asp?bassnum=BCSC2A, 2008.
  17. http://www.matweb.com/search/SpecificMaterial.asp?bassnum=BA1A, 2008.
  18. D. Lundström, B. Karlsson, and M. Gustavsson, “Anisotropy in thermal transport properties of cast γ-TiAl alloys,” Zeitschrift für Metallkunde, vol. 92, no. 11, pp. 1203–1212, 2001. View at Google Scholar
  19. D. Veeraraghavan, U. Pilchowski, B. Natarajan, and V. K. Vasudevan, “Phase equilibria and transformations in Ti-(25–52) at.% Al alloys studied by electrical resistivity measurements,” Acta Materialia, vol. 46, no. 2, pp. 405–421, 1998. View at Google Scholar