Table of Contents Author Guidelines Submit a Manuscript
Journal of Materials
Volume 2013 (2013), Article ID 124649, 6 pages
http://dx.doi.org/10.1155/2013/124649
Research Article

On High-Temperature Materials: A Case on Creep and Oxidation of a Fully Austenitic Heat-Resistant Superalloy Stainless Steel Sheet

Faculty of Mechanical Engineering, The Indian Engineering College, Tirunelveli 627116, Tamil Nadu, India

Received 21 November 2012; Revised 8 January 2013; Accepted 22 January 2013

Academic Editor: Te-Hua Fang

Copyright © 2013 A. Kanni Raj. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Kassner and M. T. Perez Prado, “Five-power-law creep in single phase metals and alloys,” Progress in Materials Science, vol. 45, no. 1, pp. 1–102, 2000. View at Publisher · View at Google Scholar
  2. A. Kanni Raj, Creep: Basic Theory and Dissertation, AV, Saarbrücken, Germany, 2011.
  3. K. Maruyama, H. Ghassemi Armaki, and K. Yoshimi, “Multiregion analysis of creep rupture data of 316 stainless steel,” International Journal of Pressure Vessels and Piping, vol. 84, no. 3, pp. 171–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Voicu, J. Lacaze, E. Andrieu, D. Poquillon, and J. Furtado, “Creep and tensile behaviour of austenitic Fe-Cr-Ni stainless steels,” Materials Science and Engineering A, vol. 510-511, pp. 185–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. S. M. Tavares, V. Moura, V. C. da Costa, M. L. R. Ferreira, and J. M. Pardal, “Microstructural changes and corrosion resistance of AISI 310S steel exposed to 600–800 C,” Materials Characterization, vol. 60, no. 6, pp. 573–578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Srinivas, D. V. V. Satyanarayana, and M. C. Pandey, “Creep testing,” Transactions of the Indian Institute of Metals, vol. 49, pp. 625–640, 1996. View at Google Scholar
  7. H. De Cicco, M. I. Luppo, H. Raffaeli, J. Di Gaetano, L. M. Gribaudo, and J. Ovejero-García, “Creep behavior of an A286 type stainless steel,” Materials Characterization, vol. 55, no. 2, pp. 97–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Liu, Y. He, and W. Gao, “Surface nanocrystallization of 310s stainless steel and its effect on oxidation behavior,” Journal of Materials Engineering and Performance, vol. 7, no. 1, pp. 88–92, 1998. View at Publisher · View at Google Scholar
  9. M. L. Lau and E. J. Lavernia, “Microstructural evolution and oxidation behavior of nanocrystalline 316-stainless steel coatings produced by high-velocity oxygen fuel spraying,” Materials Science and Engineering A, vol. 272, no. 1, pp. 222–229, 1999. View at Publisher · View at Google Scholar
  10. A. M. Huntz, A. Reckmann, C. Haut et al., “Oxidation of AISI 304 and AISI 439 stainless steels,” Materials Science and Engineering A, vol. 447, pp. 266–276, 2007. View at Google Scholar
  11. A. Kanni Raj, “Creep and hot corrosion behavior of fully austenitic heat resistant SAIL’s AISI 310S stainless steel,” in Proceedings of the 6th International Conference on Creep, Fatigue and Creep-Fatigue Interaction, Kalpakkam, India, 2012.