Table of Contents
Journal of Materials
Volume 2013, Article ID 352578, 6 pages
Research Article

On the Prediction of Strength from Hardness for Copper Alloys

Materials Processing and Characterization Group, Vikram Sarabhai Space Centre, Trivandrum 695 022, India

Received 23 November 2012; Revised 27 February 2013; Accepted 18 March 2013

Academic Editor: Steve Bull

Copyright © 2013 S. Chenna Krishna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Hardness and strength values of over 55 copper alloys strengthened by solid solution strengthening, precipitation hardening, cold working, and dispersion strengthening were compiled. The yield strength (YS) and ultimate tensile strength (UTS) values of the copper alloys examined ranged between 50 to 1300 MPa and 200 to 1400 MPa, respectively. The compiled values were classified based on strain-hardening potential an indirect method to understand the effect of strain-hardening characteristics. Least squares regression analysis was employed to establish correlations between strength and Vickers hardness values. Strain-hardening potential showed a significant effect on the correlations. In all the cases, a linear relation was obtained for both YS and UTS with hardness for the entire range of values under analysis. Simple empirical equations were proposed to estimate the strength using bulk hardness. The proposed correlations obtained for the entire range of values were verified with experimental values. A good agreement was observed between experimental and predicted values.