Table of Contents
Journal of Materials
Volume 2013, Article ID 478681, 11 pages
http://dx.doi.org/10.1155/2013/478681
Research Article

Microwave Assisted Synthesis of ZnO Nanoparticles: Effect of Precursor Reagents, Temperature, Irradiation Time, and Additives on Nano-ZnO Morphology Development

Centro de Investigación en Química Aplicada, Boulevard Enrique Reyna 140, 25253 Saltillo, COAH, Mexico

Received 27 December 2012; Accepted 26 March 2013

Academic Editor: Antoni Morawski

Copyright © 2013 Gastón P. Barreto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Wang and M. Muhammed, “Synthesis of zinc oxide nanoparticles with controlled morphology,” Journal of Materials Chemistry, vol. 9, no. 11, pp. 2871–2878, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Hong, T. Pan, J. Qian, and H. Li, “Synthesis and surface modification of ZnO nanoparticles,” Chemical Engineering Journal, vol. 119, no. 2-3, pp. 71–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Paraguay, W. Estrada, D. R. Acosta, E. Andrade, and M. Miki-Yoshida, “Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis,” Thin Solid Films, vol. 350, no. 1, pp. 192–202, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Tani, L. Mädler, and S. E. Pratsinis, “Homogeneous ZnO nanoparticles by flame spray pyrolysis,” Journal of Nanoparticle Research, vol. 4, no. 4, pp. 337–343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Wang and L. Gao, “Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties,” Journal of Materials Chemistry, vol. 13, no. 10, pp. 2551–2554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Liu and H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm,” Journal of the American Chemical Society, vol. 125, no. 15, pp. 4430–4431, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Pal and P. Santiago, “Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process,” Journal of Physical Chemistry B, vol. 109, no. 32, pp. 15317–15321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids,” Journal of the American Chemical Society, vol. 113, no. 8, pp. 2826–2833, 1991. View at Google Scholar · View at Scopus
  9. M. Ristić, S. Musić, M. Ivanda, and S. Popović, “Sol-gel synthesis and characterization of nanocrystalline ZnO powders,” Journal of Alloys and Compounds, vol. 397, no. 1-2, pp. L1–L4, 2005. View at Publisher · View at Google Scholar
  10. H. M. Cheng, H. C. Hsu, S. L. Chen et al., “Efficient UV photoluminescence from monodispersed secondary ZnO colloidal spheres synthesized by sol-gel method,” Journal of Crystal Growth, vol. 277, no. 1–4, pp. 192–199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Y. Tay, S. Li, F. Boey, Y. H. Cheng, and M. H. Liang, “Growth mechanism of spherical ZnO nanostructures synthesized via colloid chemistry,” Physica B, vol. 394, no. 2, pp. 372–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Ö. A. Yıldırım and C. Durucan, “Synthesis of zinc oxide nanoparticles elaborated by microemulsion method,” Journal of Alloys and Compounds, vol. 506, no. 2, pp. 944–949, 2010. View at Publisher · View at Google Scholar
  13. V. Polshettiwar and R. S. Varma, “Microwave-assisted organic synthesis and transformations using benign reaction media,” Accounts of Chemical Research, vol. 41, no. 5, pp. 629–639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. O. Kappe, “Controlled microwave heating in modern organic synthesis,” Angewandte Chemie—International Edition, vol. 43, no. 46, pp. 6250–6284, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Bilecka and M. Niederberger, “Microwave chemistry for inorganic nanomaterials synthesis,” Nanoscale, vol. 2, no. 8, pp. 1358–1374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Huang, C. Xia, L. Cao, and X. Zeng, “Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology,” Materials Science and Engineering B, vol. 150, no. 3, pp. 187–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Sharma, S. Sharma, B. S. Kaith, J. Rajput, and M. Kaur, “Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method,” Applied Surface Science, vol. 257, no. 22, pp. 9661–9672, 2011. View at Publisher · View at Google Scholar
  18. R. Al-Gaashani, S. Radiman, N. Tabet, and A. R. Daud, “Effect of microwave power on the morphology and optical property of zinc oxide nano-structures prepared via a microwave-assisted aqueous solution method,” Materials Chemistry and Physics, vol. 125, no. 3, pp. 846–852, 2011. View at Publisher · View at Google Scholar
  19. T. D. Canh, N. V. Tuyen, and N. N. Long, “Influence of solvents on the growth of zinc oxide nanoparticles fabricated by microwave irradiation,” VNU Journal of Science, Mathematics-Physics, vol. 25, pp. 71–76, 2009. View at Google Scholar
  20. L. Wu, Y. Wu, Y. Shi, and H. Wei, “Synthesis of ZnO nanorods and their optical absorption in visible-light region,” Rare Metals, vol. 25, no. 1, pp. 68–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Kleinwechter, C. Janzen, J. Knipping, H. Wiggers, and P. Roth, “Formation and properties of ZnO nano-particles from gas phase synthesis processes,” Journal of Materials Science, vol. 37, no. 20, pp. 4349–4360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Hu, G. Oskam, R. L. Penn, N. Pesika, and P. C. Searson, “The influence of anion on the coarsening kinetics of ZnO nanoparticles,” Journal of Physical Chemistry B, vol. 107, no. 14, pp. 3124–3130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Li, E. Shi, W. Zhong, and Z.-W. Yin, “Growth mechanism and growth habit of oxide crystals,” Journal of Crystal Growth, vol. 203, no. 1-2, pp. 186–196, 1999. View at Publisher · View at Google Scholar
  24. S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions,” Journal of Materials Chemistry, vol. 12, no. 12, pp. 3773–3778, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. C. Chen and S. L. Lo, “Effects of operational conditions of microwave-assisted synthesis on morphology and photocatalytic capability of zinc oxide,” Chemical Engineering Journal, vol. 170, no. 2-3, pp. 411–418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Nejati, Z. Rezvani, and R. Pakizevand, “Synthesis of ZnO nanoparticles and investigation of the ionic template effect on their size and shape,” International Nano Letters, vol. 1, no. 2, pp. 75–81, 2011. View at Google Scholar
  27. S. Erten-Ela, S. Cogal, and S. Icli, “Conventional and microwave-assisted synthesis of ZnO nanorods and effects of PEG400 as a surfactant on the morphology,” Inorganica Chimica Acta, vol. 362, no. 6, pp. 1855–1858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Xu, H. Wang, Y. Zhang et al., “Hydrothermal synthesis of zinc oxide powders with controllable morphology,” Ceramics International, vol. 30, no. 1, pp. 93–97, 2004. View at Google Scholar
  29. J. H. Park and S. G. Oh, “Preparation of CaO as OLED getter material through control of crystal growth of CaCO3 by block copolymers in aqueous solution,” Materials Research Bulletin, vol. 44, no. 1, pp. 110–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Koushki, M. H. Majles Ara, S. H. Mousavi, and H. Haratizadeh, “Temperature effect on optical properties of colloidal ZnO nanoparticles,” Current Applied Physics, vol. 11, no. 5, pp. 1164–1167, 2011. View at Publisher · View at Google Scholar · View at Scopus