Table of Contents
Journal of Materials
Volume 2013, Article ID 548026, 7 pages
http://dx.doi.org/10.1155/2013/548026
Research Article

Enhanced Performance of Membraneless Sodium Percarbonate Fuel Cells

1Department of Chemistry, Presidency College, Chennai 600 005, India
2Department of Chemical Engineering, SRM University, Chennai 603203, India

Received 17 December 2012; Revised 19 March 2013; Accepted 24 April 2013

Academic Editor: Mike McShane

Copyright © 2013 M. Gowdhamamoorthi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Chen, M. H. Chang, and C. W. Hsu, “Analysis of membraneless microfuel cell using decomposition of hydrogen peroxide in a Y-shaped microchannel,” Electrochimica Acta, vol. 52, no. 25, pp. 7270–7277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Larminie and A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, Chichester, UK, 2nd edition, 2003.
  3. L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel cells: principles, types, fuels, and applications,” ChemPhysChem, vol. 1, no. 4, pp. 162–193, 2000. View at Google Scholar
  4. M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup, and S. Walbran, “Mechanisms of proton conductance in polymer electrolyte membranes,” Journal of Physical Chemistry B, vol. 105, no. 17, pp. 3646–3662, 2001. View at Publisher · View at Google Scholar
  5. R. F. Ismagilov, A. D. Stroock, P. J. A. Kenis, G. Whitesides, and H. A. Stone, “Microfluidic platforms and fundamental electrocatalysis studies for fuel cell applications,” Applied Physics Letters, vol. 76, pp. 2376–2378, 2000. View at Publisher · View at Google Scholar
  6. P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, “Microfabrication inside capillaries using multiphase laminar flow patterning,” Science, vol. 285, no. 5424, pp. 83–85, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. E. R. Choban, L. J. Markoski, A. Wieckowski, and P. J. A. Kenis, “Microfluidic fuel cell based on laminar flow,” Journal of Power Sources, vol. 128, no. 1, pp. 54–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley Interscience, New York, NY, USA, 1988.
  9. C. Karunakaran and R. Kamalam, “Structure-reactivity correlation of anilines in acetic acid,” Journal of Organic Chemistry, vol. 67, no. 4, pp. 1118–1124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. A. M. Shaegh, N. T. Nguyen, M. M. S. Ehteshami, and S. H. Chan, “A membraneless hydrogen peroxide fuel cell using prussian blue as cathode material,” Energy and Environmental Science, vol. 5, pp. 8225–8228, 2012. View at Google Scholar
  11. E. G. Dow, R. R. Bessette, G. L. Seeback et al., “Enhanced electrochemical performance in the development of the aluminum/hydrogen peroxide semi-fuel cell,” Journal of Power Sources, vol. 65, no. 1-2, pp. 207–212, 1997. View at Google Scholar · View at Scopus
  12. N. Da Mota, D. A. Finkelstein, J. D. Kirtland, C. A. Rodriguez, A. D. Stroock, and H. D. Abruña, “Membraneless, room-temperature, direct borohydride/cerium fuel cell with power density of over 0. 25 W/cm2,” Journal of the American Chemical Society, vol. 14, article 134, 2012. View at Publisher · View at Google Scholar
  13. S. Hasegawa, K. Shimotani, K. Kishi, and H. Watanabe, “Electricity generation from decomposition of hydrogen peroxide,” Electrochemical and Solid-State Letters, vol. 8, no. 2, pp. A119–A121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. J. Bard, R. Parsons, and J. Jordan, Eds., Standard Potentials in Aqueous Solution, Marcel Dekker, New York, NY, USA, 1985.
  15. D. D. Wagman, W. H. Evans, V. B. Parker et al., “The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units,” Journal of Physics, vol. 11, supplement 2, pp. 1–392, 1982. View at Google Scholar
  16. J. O. M. Bockris and L. F. Oldfield, “The oxidation-reduction reactions of hydrogen peroxide at inert metal electrodes and mercury cathodes,” Transactions of the Faraday Society, vol. 51, pp. 249–259, 1955. View at Google Scholar · View at Scopus
  17. J. D. Morse, A. F. Janlowski, R. T. Graff, and J. P. Hayes, “Transport in a microfluidic catalytic reactor,” Journal of Vacuum Science and Technology A, p. A18, 2003. View at Google Scholar
  18. T. J. Yen, N. Fang, X. Zhang, G. Q. Lu, and C. Y. Wang, “A micro methanol fuel cell operating at near room temperature,” Applied Physics Letters, vol. 83, no. 19, pp. 4056–4058, 2003. View at Publisher · View at Google Scholar
  19. K. B. Min, S. Tanaka, and M. Esashi, “Microfluidic device for the detection of glucose using a micro direct methanol fuel cell as an amper,” Electrochemistry, vol. 70, pp. 924–927, 2002. View at Google Scholar
  20. E. R. Choban, J. S. Spendelow, L. Gancs, A. Wieckowski, and P. J. A. Kenis, “Fabrication of a micro-direct methanol fuel cell using microfluidics,” Electrochimica Acta, vol. 50, no. 27, pp. 5390–5398, 2005. View at Publisher · View at Google Scholar
  21. M. P. Maher, J. Pine, J. Wright, and Y. Tai, “A new multielectrode device for stimulating and recording from cultured neurons,” Journal of Neuroscience Methods, vol. 87, no. 2, pp. 45–456, 1999. View at Publisher · View at Google Scholar
  22. A. Bazylak, D. Sinton, and N. Djilali, “Improved fuel utilization in microfluidic fuel cells: a computational study,” Journal of Power Sources, vol. 143, no. 1-2, pp. 57–66, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. H. Chang, F. Chen, and N. S. Fang, “Optimum geometrical design for improved fuel utilization in membraneless micro fuel cell,” Journal of Power Sources, vol. 159, no. 2, pp. 810–816, 2006. View at Publisher · View at Google Scholar
  24. T. Yoshitake, H. Kimura, S. Kuroshima et al., “Small direct methanol fuel cell pack for portable applications,” Electrochemistry, vol. 70, no. 12, pp. 966–968, 2002. View at Google Scholar · View at Scopus
  25. R. S. Jayashree, L. Gancs, E. R. Choban et al., “Air-breathing laminar low-based microfluidic fuel cell,” Journal of the American Chemical Society, vol. 127, no. 48, pp. 16758–16759, 2005. View at Publisher · View at Google Scholar · View at Scopus