Table of Contents
Journal of Materials
Volume 2013, Article ID 897343, 7 pages
http://dx.doi.org/10.1155/2013/897343
Research Article

Complex Formation in a Liquid-Liquid Extraction System Containing Cobalt(II), 4-(2-Pyridylazo)resorcinol, and Nitron

1Department of Chemistry and Biochemistry, Medical University Plovdiv, 15A Vassil Aprilov Boulevard, 4002 Plovdiv, Bulgaria
2Department of General and Inorganic Chemistry, University of Plovdiv “Paisii Khilendarski”, 24 Tsar Assen Street, 4000 Plovdiv, Bulgaria

Received 12 December 2012; Revised 23 February 2013; Accepted 24 February 2013

Academic Editor: Concepción López

Copyright © 2013 Petya Vassileva Racheva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Oh and D. L. Brown, “Vitamin B12 deficiency,” American Family Physician, vol. 67, no. 5, pp. 979–986, 2003. View at Google Scholar · View at Scopus
  2. B. B. Tewari, “Complex formation of some divalent metal ions with oxygen donor ligands,” Revista Boliviana de Química, vol. 26, no. 1, pp. 30–36, 2009. View at Google Scholar
  3. D. G. Barceloux and D. Barceloux, “Cobalt,” Clinical Toxicology, vol. 37, no. 2, pp. 201–216, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. R. A. Meyers, Ed., Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation, Wiley, Chichester, UK, 2000.
  5. M. Jakubowski and M. Trzcinka-Ochocka, “Biological monitoring of exposure: trends and key developments,” Journal of Occupational Health, vol. 47, no. 1, pp. 22–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Tsuyoshi, H. Hoshino, and T. Yotsuyanagi, “Retention selectivity between 4-(2-pyridylazo)resorcinol and its cobalt chelate in the solid phase extraction systems and its application to the on-line preconcentration for reversed phase HPLC,” Chemistry Letters, vol. 30, no. 4, pp. 302–303, 2001. View at Google Scholar · View at Scopus
  7. R. E. Taljaard and J. F. V. Staden, “Simultaneous determination of cobalt(II) and Ni(II) in water and soil samples with sequential injection analysis,” Analytica Chimica Acta, vol. 366, no. 1–3, pp. 177–186, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Hol, U. Divrikli, and L. Elci, “Determination of cobalt, nickel and iron at trace level in natural water samples by in-column chelation-reversed phase high-performance liquid chromatography,” Environmental Monitoring and Assessment, vol. 184, no. 6, pp. 3469–3479, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. V. M. Ivanov, N. I. Ershova, V. N. Figurovskaya, and A. V. Ivanov, “Optical and chromaticity characteristics of cobalt and palladium 4-(2-pyridylazo)resorcinates,” Journal of Analytical Chemistry, vol. 56, no. 2, pp. 143–148, 2001. View at Google Scholar · View at Scopus
  10. G. Ram, R. S. Chauhan, A. K. Goswami, and D. N. Purohit, “Review of spectrophotometric methods for determination of cobalt(II),” Reviews in Analytical Chemistry, vol. 22, no. 4, pp. 255–317, 2003. View at Google Scholar · View at Scopus
  11. H. Ciftci, “Solid phase extraction method for the determination of cobalt in water samples on duolite XAD-761 resin using 4-(2-Pyridylazo) resorcinol by FAAS,” Current Analytical Chemistry, vol. 6, no. 2, pp. 154–160, 2010. View at Google Scholar · View at Scopus
  12. S. Tokalioǧlu and S. Kartal, “Preconcentration of iron(III), lead(II), cobalt(II) and chromium(III) on amberlite XAD-1180 resin loaded with 4-(2-pyridylazo)-resorcinol (PAR) and their determination by FAAS,” Bulletin of the Korean Chemical Society, vol. 27, no. 9, pp. 1293–1296, 2006. View at Google Scholar · View at Scopus
  13. V. Cucinotta, R. Caruso, A. Giuffrida, M. Messina, G. Maccarrone, and A. Torrisi, “Separation and quantitation of metal ions by 4-(2-pyridylazo)resorcinol complexation in capillary electrophoresis-electrospray ionisation mass spectrometry,” Journal of Chromatography A, vol. 1179, no. 1, pp. 17–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. T. Jiang, J. C. Yu, and H. Y. Liu, “Simultaneous determination of cobalt, copper and zinc by energy dispersive X-ray fluorescence spectrometry after preconcentration on PAR-loaded ion-exchange resin,” Analytical Sciences, vol. 21, no. 7, pp. 851–854, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. C. Nascentes and M. A. Z. Arruda, “Cloud point formation based on mixed micelles in the presence of electrolytes for cobalt extraction and preconcentration,” Talanta, vol. 61, no. 6, pp. 759–768, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. I. V. Vyshcherevich and I. E. Kalinichenko, “Photometric determination in drinking water of cobalt and nickel with 4-(2-pyridylazo)-resorcinol,” Journal of Water Chemistry and Technology, vol. 32, no. 1, pp. 33–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Ince, G. Kaya, and M. Yaman, “Solid phase extraction and preconcentration of cobalt in mineral waters with PAR-loaded Amberlite XAD-7 and flame atomic absorption spectrometry,” Environmental Chemistry Letters, vol. 8, no. 3, pp. 283–288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. L. Kolomiets, L. A. Pilipenko, I. M. Zhmud', and I. P. Panfilova, “Application of derivative spectrophotometry to the selective determination of nickel, cobalt, copper, and iron(III) with 4-(2-pyridylazo)resorcinol in binary mixtures,” Zhurnal Analiticheskoi Khimii, vol. 54, no. 1, pp. 34–36, 1999. View at Google Scholar
  19. H. Cıftcı, A. Olcucu, A. Ozkaya, and T. Cıftcı, “Optimization of analytical parameters for determination of iron, nickel and cobalt in plants with RP-HPLC,” Asian Journal of Chemistry, vol. 21, no. 4, pp. 2643–2652, 2009. View at Google Scholar
  20. C. E. Säbel, J. L. Shepherd, and S. Siemann, “A direct spectrophotometric method for the simultaneous determination of zinc and cobalt in metalloproteins using 4-(2-pyridylazo)resorcinol,” Analytical Biochemistry, vol. 391, no. 1, pp. 74–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. B. F. Liu, L. B. Liu, and J. K. Cheng, “Analysis of metal complexes in the presence of mixed ion pairing additives in capillary electrophoresis,” Journal of Chromatography A, vol. 848, no. 1-2, pp. 473–484, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Sato and T. Goto, “Determination of nickel(II) and cobalt(II) in an aqueous solution using 4-(2-Pyridylazo)-resorcinol/Capriquat-loaded silica gel,” Bunseki Kagaku, vol. 47, no. 10, pp. 735–738, 1998. View at Google Scholar · View at Scopus
  23. H. R. Pouretedal, P. Sononi, M. H. Keshavarz, and A. Semnani, “Simultaneous determination of cobalt and iron using first-derivative spectrophotometric and h-point standard addition methods in micellar media,” Chemistry, vol. 18, no. 3, pp. 22–35, 2009. View at Google Scholar · View at Scopus
  24. S. N. Bhadani, M. Tewari, A. Agrawal, and C. Sekhar, “Extractive-photometric determination of cobalt(II) in steels using 4-(2-pyridylazo)resorcinol and xylometazoline hydrochloride,” Journal of the Indian Chemical Society, vol. 75, no. 3, pp. 176–177, 1998. View at Google Scholar
  25. P. Berton and R. G. Wuilloud, “An online ionic liquid-based microextraction system coupled to electrothermal atomic absorption spectrometry for cobalt determination in environmental samples and pharmaceutical formulations,” Analytical Methods, vol. 3, no. 3, pp. 664–672, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. G. Gaikwad, H. Noguchi, and M. Yoshio, “Solvent extraction studies of metal-4-(2-pyridyl-azo)-resorcinol complexes with potassium-dicyclohexyl-18-crown-6 complex,” Analytical Letters, vol. 24, no. 9, pp. 1625–1641, 1991. View at Google Scholar
  27. S. G. Mamuliya, I. V. Pyatnitskii, L. L. Kolomiets, and K. I. Grigalashvili, “Solvent extraction of complexes of cobalt, nickel, copper, zinc and cadmium with 4-(2-pyridylazo)-resorcinol and diphenylguanidine,” Zhurnal Analiticheskoi Khimii, vol. 35, no. 7, pp. 1306–1309, 1980 (Russian). View at Google Scholar
  28. R. Yamashita, T. Yotsuyanagi, and K. Aomura, “The extraction-spectrophotometric determination of traces of iron and cobalt with 4-(2-pyridylazo)-resorcinol,” The Japan Society for Analytical Chemistry, vol. 20, pp. 1282–1288, 1971. View at Google Scholar
  29. M. Široki, L. Marić, Z. Štefanac, and M. J. Herak, “Characterization of complexes involved in the spectrophotometric determination of cobalt with 4-(2-pyridylazo)resorcinol,” Analytica Chimica Acta, vol. 75, no. 1, pp. 101–109, 1975. View at Publisher · View at Google Scholar
  30. J. Dolezal and L. Sommer, “Reverse-phase high performance liquid chromatography of metal chelates of 4-(2-pyridylazo)resorcinol and 4-(2-thiazolylazo)resorcinol. Simultaneous determination of low concentrations of Co, Ni and Fe,” Collection of Czechoslovak Chemical Communications, vol. 59, pp. 2209–2226, 1994. View at Google Scholar
  31. N. T. Sizonenko and L. V. Gudzenko, “Determination of additions of cobalt in single crystals of cesium iodine, activated by thallium,” Zavodskaya Laboratoriya, vol. 51, no. 2, pp. 109–111, 1985 (Russian). View at Google Scholar · View at Scopus
  32. T. Okutani, A. Sakuragawa, and M. Murakami, “Determination of iron, cobalt ad nickel by reverse phase high performance liquid chromatography following ion pair extraction of metal -4-(2-pyridylazo)resorcinol complexes,” Analytical Sciences, vol. 7, no. 1, pp. 109–112, 1991. View at Google Scholar
  33. J. B. Noffsinger and N. D. Danielson, “Retention characteristics of Co+3, Fe+3, and Cu+2 4-(2-Pyridylazo)resorcinol (PAR) complexes on C-18 and amino silica packings,” Journal of Liquid Chromatography, vol. 9, no. 10, pp. 2165–2183, 1986. View at Google Scholar · View at Scopus
  34. H. Okochi, “Spectrophotometric determination of microamounts of cobalt in iron and steel by solvent extraction of cobalt-4-(2-pyridylazo) resorcinol complex with quaternary ammonium chloride,” Bunseki Kagaku, vol. 21, no. 1, pp. 51–56, 1972 (Japanese). View at Google Scholar
  35. T. Yotsuyanagi, R. Yamashita, and K. Aomura, “Spectrophotometric determination of traces of metals by solvent extraction with 4-(2-pyridylazo)-resorcin-quaternary ammonium salt-polyaminocarboxylic acid system,” The Japan Society For Analytical Chemistry, vol. 19, no. 7, pp. 981–982, 1970 (Japanese). View at Google Scholar
  36. V. V. Divarova, K. B. Gavazov, V. D. Lekova, and A. N. Dimitrov, “Spectrophotometric investigations on liquid-liquid extraction systems containing cobalt, 4-(2-pyridylazo)-resorcinol and tetrazolium salts,” Chemija. In press.
  37. C. Farber, M. Leibold, C. Bruhn, M. Maurer, and U. Siemeling, “Nitron: a stable N-heterocyclic carbene that has been commercially available for more than a century,” Chemical Communications, vol. 48, no. 2, pp. 227–229, 2012. View at Google Scholar
  38. R. M. Pogranichnaya, B. E. Reznik, V. V. Nerubashchenko, A. G. Zezyanova, and A. V. Tsevina, “Solvent extraction of mixed-ligand complexes of vanadium with 4-(2-pyridylazo) resorcinol and nitron,” Zhurnal Analiticheskoi Khimii, vol. 30, p. 180, 1975 (Russian). View at Google Scholar
  39. A. I. Busev and V. M. Ivanov, “1-(2-Pyridylazo)-resorcinol as a reagent for the photometric determination of cobalt,” Zhurnal Analiticheskoi Khimii, vol. 18, no. 2, pp. 208–215, 1963 (Russian). View at Google Scholar
  40. Z. Zhiming, M. Dongsen, and Y. Cunxiao, “Mobile equilibrium method for determining composition and stability constant of coordination compounds of the form MmRn,” Journal of Rare Earths, vol. 15, no. 3, pp. 218–219, 1997. View at Google Scholar · View at Scopus
  41. A. Holme and F. J. Langmyhr, “A modified and a new straight-line method for determining the composition of weak complexes of the form AmBn,” Analytica Chimica Acta, vol. 36, pp. 383–391, 1966. View at Google Scholar · View at Scopus
  42. A. E. Harvey and D. L. Manning, “Spectrophotometric methods of establishing empirical formulas of colored complexes in solution,” Journal of the American Chemical Society, vol. 72, no. 10, pp. 4488–4493, 1950. View at Google Scholar · View at Scopus
  43. J. H. Yoe and A. L. Jones, “Colorimetric determination of iron with disodium-1,2-dihydroxybenzene-3,5-disulfonate,” Industrial and Engineering Chemistry, vol. 16, no. 2, pp. 111–115, 1944. View at Google Scholar · View at Scopus
  44. E. Asmus, “Eine neue methode zur ermittlung der zusammensetzung schwacher komplexe,” Fresenius' Zeitschrift für Analytische Chemie, vol. 178, no. 2, pp. 104–116, 1960 (German). View at Publisher · View at Google Scholar · View at Scopus
  45. A. Corsini, Q. Fernando, and H. Freiser, “The effect of metal ion chelation on the acid dissociation of the ligand 4-(2-pyridylazo)-resorcinol,” Inorganic Chemistry, vol. 2, no. 1, pp. 224–226, 1963. View at Google Scholar · View at Scopus
  46. F. I. Lobanov, G. K. Nurtaeva, and E. E. Ergozhin, Extraction of Metal Complexes With Hydroxyazo Compounds of Pyridine, Alma-Ata: Nauka, 1983.
  47. L. Marić and M. Široki, “Extraction of 4-(2-pyridylazo) resorcinol and 4-(2-thiazolylazo) resorcinol with chloroform and tetraphenylarsonium and phosphonium chlorides,” Analytica Chimica Acta, vol. 318, no. 3, pp. 345–355, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. A. S. Babenko, V. N. Tolmachev, and A. N. Dzizin, “Investigation of sulforic acid salts of nitron,” Ukrainskii Khimicheskii Zhurnal, vol. 29, no. 7, pp. 702–708, 1963 (Russian). View at Google Scholar