Table of Contents
Journal of Materials
Volume 2014, Article ID 127049, 10 pages
http://dx.doi.org/10.1155/2014/127049
Review Article

Aerogels as Promising Thermal Insulating Materials: An Overview

Organic Building Materials Group, CSIR-Central Building Research Institute, Roorkee 247667, India

Received 11 January 2014; Accepted 11 February 2014; Published 27 April 2014

Academic Editor: Iwan Kityk

Copyright © 2014 Prakash C. Thapliyal and Kirti Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. McNaught and A. Wilkinson, Compendium of Chemical Terminology, IUPAC Goldbook, PAC, 2007, 791801, Blackwell Science, Oxford, Cambridge, UK, 2nd edition. View at Publisher · View at Google Scholar
  2. M. A. Aegerter, N. Leventis, and M. M. Koebel, Aerogels Handbook, Springer, New York, NY, USA, 2011.
  3. “Guinness Records Names JPL's Aerogel World's Lightest Solid,” NASA Jet Propulsion Laboratory, 2002.
  4. K. Higa, “Aerogel—the insulative frozen smoke,” Illumin, vol. 14, no. 3, p. 1, 2014. View at Google Scholar
  5. S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature, vol. 127, no. 3211, p. 741, 1931. View at Google Scholar · View at Scopus
  6. D. M. Smith, R. Deshpande, and C. J. Brinker, “Preparation of low-density aerogels at ambient pressure for thermal insulation,” Ceramic Transactions, vol. 31, pp. 71–80, 1993. View at Google Scholar
  7. S. T. Mayer, R. W. Pekala, and J. L. Kaschmitter, “Aerocapacitor. An electrochemical double-layer energy-storage device,” Journal of the Electrochemical Society, vol. 140, no. 2, pp. 446–451, 1993. View at Google Scholar · View at Scopus
  8. N. Leventis, N. Chandrasekaran, C. Sotiriou-Leventis, and A. Mumtaz, “Smelting in the age of nano: iron aerogels,” Journal of Materials Chemistry, vol. 19, no. 1, pp. 63–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. B. C. Tappan, M. H. Huynh, M. A. Hiskey et al., “Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition,” Journal of the American Chemical Society, vol. 128, no. 20, pp. 6589–6594, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Hüsing and U. Schubert, “Aerogels—airy materials: chemistry, structure, and properties,” Angewandte Chemie International Edition, vol. 37, no. 1-2, pp. 22–45, 1998. View at Google Scholar · View at Scopus
  11. K. Richter, P. M. Norris, and C. L. Chang, “Aerogels: applications, structure and heat transfer phenomena,” in Review on Heat Transfer, V. Prasad, Y. Jaluria, and G. Chen, Eds., vol. 6, chapter 2, pp. 61–114, 1995. View at Google Scholar
  12. L. W. Hrubesh, “Aerogel applications,” Journal of Non-Crystalline Solids, vol. 225, no. 1–3, pp. 335–342, 1998. View at Google Scholar · View at Scopus
  13. M. Schmidt and F. Schwertfeger, “Applications for silica aerogel products,” Journal of Non-Crystalline Solids, vol. 225, no. 1–3, pp. 364–368, 1998. View at Google Scholar · View at Scopus
  14. J. Fricke, “Thermal transport in porous superinsulations,” in Aerogels, J. Fricke, Ed., vol. 6 of Springer Proceedings in Physics, pp. 94–103, 1986. View at Google Scholar
  15. Z. Novak and Ž. Knez, “Diffusion of methanol-liquid CO2 and methanol-supercritical CO2 in silica aerogels,” Journal of Non-Crystalline Solids, vol. 221, no. 2-3, pp. 163–169, 1997. View at Google Scholar · View at Scopus
  16. H. Tamon, T. Kitamura, and M. Okazaki, “Preparation of silica aerogel from TEOS,” Journal of Colloid and Interface Science, vol. 197, no. 2, pp. 353–359, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. D. M. Smith, A. Maskara, and U. Boes, “Aerogel-based thermal insulation,” Journal of Non-Crystalline Solids, vol. 225, no. 1–3, pp. 254–259, 1998. View at Google Scholar · View at Scopus
  18. A. Soleimani Dorcheh and M. H. Abbasi, “Silica aerogel; synthesis, properties and characterization,” Journal of Materials Processing Technology, vol. 199, no. 1, pp. 10–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. C. Chiang, W. Y. Cheng, and S. Y. Lu, “Titania aerogels as a superior mesoporous structure for photoanodes of dye-sensitized solar cells,” International Journal of Electrochemical Science, vol. 7, no. 8, pp. 6910–6919, 2012. View at Google Scholar
  20. P. Arora, S. Sharma, S. K. Ghoshal, N. Dilbaghi, and A. Chaudhury, “A functional approach toward xerogel immobilization for encapsulation biocompatibility of Rhizobium toward biosensor,” Frontiers in Biology, vol. 8, no. 6, pp. 626–631, 2013. View at Publisher · View at Google Scholar
  21. L. Forest, V. Gibiat, and T. Woignier, “Biot's theory of acoustic propagation in porous media applied to aerogels and alcogels,” Journal of Non-Crystalline Solids, vol. 225, no. 1–3, pp. 287–292, 1998. View at Google Scholar · View at Scopus
  22. A. Du, B. Zhou, Z. Zhang, and J. Shen, “A special material or a new state of matter: a review and reconsideration of the aerogel,” Materials, vol. 6, no. 3, pp. 941–968, 2013. View at Publisher · View at Google Scholar
  23. C. J. Brinker, R. Sehgal, S. L. Hietala et al., “Sol-gel strategies for controlled porosity inorganic materials,” Journal of Membrane Science, vol. 94, pp. 85–102, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. J. L. Gurav, D. Y. Nadargi, and A. V. Rao, “Effect of mixed Catalysts system on TEOS-based silica aerogels dried at ambient pressure,” Applied Surface Science, vol. 255, no. 5, pp. 3019–3027, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Acharya, D. Joshi, and V. A. Gokhale, “AEROGEL—a promising building material for sustainable buildings,” Chemical and Process Engineering Research, vol. 9, pp. 1–6, 2013. View at Google Scholar
  26. I. Smirnova, S. Suttiruengwong, and W. Arlt, “Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems,” Journal of Non-Crystalline Solids, vol. 350, pp. 54–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. R. P. Patel, N. S. Purohit, and A. M. Suthar, “An overview of silica aerogels,” International Journal of ChemTech Research, vol. 1, no. 4, pp. 1052–1057, 2009. View at Google Scholar · View at Scopus
  28. A. C. Pierre and G. M. Pajonk, “Chemistry of aerogels and their applications,” Chemical Reviews, vol. 102, no. 11, pp. 4243–4265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. K. Akimov, “Fields of application of aerogels (review),” Instruments and Experimental Techniques, vol. 46, no. 3, pp. 287–299, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. G. M. Pajonk, “Some applications of silica aerogels,” Colloid and Polymer Science, vol. 281, no. 7, pp. 637–651, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Bisson, A. Rigacci, D. Lecomte, E. Rodier, and P. Achard, “Drying of silica gels to obtain aerogels: phenomenology and basic principles,” Drying Technology, vol. 21, no. 4, pp. 593–628, 2003. View at Publisher · View at Google Scholar
  32. C. J. Lee, G. S. Kim, and S. H. Hyun, “Synthesis of silica aerogels from waterglass via new modified ambient drying,” Journal of Materials Science, vol. 37, no. 11, pp. 2237–2241, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. A. C. Pierre, “The chemistry of precursors solutions,” in Introduction to Sol-Gel Processing, vol. 1, chapter 2, pp. 11–89, 1998. View at Google Scholar
  34. A. P. Ambekar and P. Bagade, “A review on: aerogel—world’s lightest solid,” Popular Plastics & Packaging, vol. 51, pp. 96–102, 2006. View at Google Scholar
  35. A. C. Pierre and A. Rigacci, “SiO2 aerogels,” in Aerogels Handbook, M. A. Aegerter, N. Leventis, and M. M. Koebel, Eds., Advances in Sol-Gel Derived Materials and Technologies, pp. 21–45, 2011. View at Google Scholar
  36. C. E. Carraher Jr., “General topics: silica aerogels—properties and uses,” Polymer News, vol. 30, no. 12, pp. 386–388, 2005. View at Publisher · View at Google Scholar
  37. C. E. Carraher Jr., “Silica aerogels—synthesis and history,” Polymer News, vol. 30, pp. 62–64, 2005. View at Publisher · View at Google Scholar
  38. G. M. Pajonk, “Transparent silica aerogels,” Journal of Non-Crystalline Solids, vol. 225, no. 1-3, pp. 307–314, 1998. View at Google Scholar · View at Scopus
  39. A. Venkateswara Rao and G. M. Pajonk, “Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels,” Journal of Non-Crystalline Solids, vol. 285, no. 1–3, pp. 202–209, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. A. V. Rao and R. R. Kalesh, “Comparative studies of the physical and hydrophobic properties of TEOS based silica aerogels using different co-precursors,” Science and Technology of Advanced Materials, vol. 4, no. 6, pp. 509–515, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Lu, R. Caps, J. Fricke, C. T. Alviso, and R. W. Pekala, “Correlation between structure and thermal conductivity of organic aerogels,” Journal of Non-Crystalline Solids, vol. 188, no. 3, pp. 226–234, 1995. View at Google Scholar · View at Scopus
  42. S.-K. Kang and S.-Y. Choi, “Synthesis of low-density silica gel at ambient pressure: effect of heat treatment,” Journal of Materials Science, vol. 35, no. 19, pp. 4971–4976, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. R. W. Pekala and F. M. Kong, “Resorcinol-formaldehyde aerogels and their carbonized derivatives,” Polymer Preprints, vol. 30, no. 1, pp. 221–223, 1989. View at Google Scholar
  44. P. J. M. Carrott, L. M. Marques, and M. M. L. R. Carrott, “Core-shell polymer aerogels prepared by co-polymerisation of 2,4-dihydroxybenzoic acid, resorcinol and formaldehyde,” Microporous and Mesoporous Materials, vol. 158, pp. 170–174, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Shi, L. Wang, J. Liu, and M. Zeng, “Effect of heat treatment on silica aerogels prepared via ambient drying,” Journal of Materials Science and Technology, vol. 23, no. 3, pp. 402–406, 2007. View at Google Scholar · View at Scopus
  46. B. Hosticka, P. M. Norris, J. S. Brenizer, and C. E. Daitch, “Gas flow through aerogels,” Journal of Non-Crystalline Solids, vol. 225, no. 1–3, pp. 293–297, 1998. View at Google Scholar · View at Scopus
  47. C. Moreno-Castilla and F. J. Maldonado-Hódar, “Carbon aerogels for catalysis applications: an overview,” Carbon, vol. 43, no. 3, pp. 455–465, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. B. Bryning, D. E. Milkie, M. F. Islam, L. A. Hough, J. M. Kikkawa, and A. G. Yodh, “Carbon nanotube aerogels,” Advanced Materials, vol. 19, no. 5, pp. 661–664, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Tao, M. Endo, and K. Kaneko, “A review of synthesis and nanopore structures of organic polymer aerogels and carbon aerogels,” Recent Patents on Chemical Engineering, vol. 1, pp. 192–200, 2008. View at Google Scholar
  50. W. Dong, J. S. Sakamoto, and B. Dunn, “Electrochemical properties of vanadium oxide aerogels,” Science and Technology of Advanced Materials, vol. 4, no. 1, pp. 3–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Baetens, B. P. Jelle, and A. Gustavsen, “Aerogel insulation for building applications: a state-of-the-art review,” Energy and Buildings, vol. 43, no. 4, pp. 761–769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. K. I. Jensen, “Passive solar component based on evacuated monolithic silica aerogel,” Journal of Non-Crystalline Solids, vol. 145, pp. 237–239, 1992. View at Google Scholar · View at Scopus
  53. J. E. Fesmire, S. D. Augustynowicz, and S. Rouanet, “Aerogel beads as cryogenic thermal insulation system,” in Proceedings of the Cryogenic Engineering Conference (CEC '01), vol. 613 of Advances in Cryogenic Engineering, pp. 1541–1548, July 2001. View at Publisher · View at Google Scholar
  54. A. L. Nayak and C. L. Tien, “Thermal conductivity of microsphere cryogenic insulation,” Advances in Cryogenic Engineering, vol. 22, pp. 251–262, 1977. View at Google Scholar · View at Scopus
  55. R. Wawryk and J. Rafalowicz, “The influence of residual gas pressure on the thermal conductivity of microsphere insulations,” International Journal of Thermophysics, vol. 9, no. 4, pp. 611–625, 1988. View at Publisher · View at Google Scholar · View at Scopus
  56. M. J. Burchell, M. J. Cole, M. C. Price, and A. T. Kearsley, “Experimental investigation of impacts by solar cell secondary ejecta on silica aerogel and aluminum foil: implications for the Stardust Interstellar Dust Collector,” Meteoritics and Planetary Science, vol. 47, no. 4, pp. 671–683, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. J. E. Fesmire, “Aerogel insulation systems for space launch applications,” Cryogenics, vol. 46, no. 2-3, pp. 111–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 623, no. 1, pp. 339–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. N. J. H. Dunna, M. K. Carrolla, and A. M. Anderson, “Characterization of alumina and nickel-alumina aerogels prepared via rapid supercritical extraction,” Polymer Preprints, vol. 52, no. 1, pp. 250–251, 2011. View at Google Scholar
  60. R. Yang, Y.-P. Zhang, and R.-Y. Zhao, “An improved model for analyzing the performance of photocatalytic oxidation reactors in removing volatile organic compounds and its application,” Journal of the Air and Waste Management Association, vol. 54, no. 12, pp. 1516–1524, 2004. View at Google Scholar · View at Scopus
  61. K. Kanamori, “Organic-inorganic hybrid aerogels with high mechanical properties via organotrialkoxysilane-derived sol-gel process,” Journal of the Ceramic Society of Japan, vol. 119, no. 1385, pp. 16–22, 2011. View at Google Scholar · View at Scopus
  62. J. L. Plawsky, H. Littman, and J. D. Paccione, “Design, simulation, and performance of a draft tube spout fluid bed coating system for aerogel particles,” Powder Technology, vol. 199, no. 2, pp. 131–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Ramadan, T. Coradin, S. Masse, and H. El-Rassy, “Synthesis and characterization of mesoporous hybrid silica-polyacrylamide aerogels and xerogels,” Silicon, vol. 3, no. 2, pp. 63–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Fricke and A. Emmerling, “Aerogels—recent progress in production techniques and novel applications,” Journal of Sol-Gel Science and Technology, vol. 13, no. 1–3, pp. 299–303, 1999. View at Google Scholar · View at Scopus
  65. Y. Guo and A. R. Guadalupe, “Functional silica aerogel from metastable lamellar composite,” Chemical Communications, no. 4, pp. 315–316, 1999. View at Google Scholar · View at Scopus
  66. S. Dai, Y. H. Ju, H. J. Gao, J. S. Lin, S. J. Pennycook, and C. E. Barnes, “Preparation of silica aerogel using ionic liquids as solvents,” Chemical Communications, no. 3, pp. 243–244, 2000. View at Google Scholar · View at Scopus
  67. N. Leventis, C. Sotiriou-Leventis, G. Zhang, and A.-M. M. Rawashdeh, “Nanoengineering strong silica aerogels,” Nano Letters, vol. 2, no. 9, pp. 957–960, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. Cryogel 5201, 10201 Safety Data Sheet, Aspen Aerogels. 11/13/07.
  69. P. C. Thapliyal and S. R. Karade, “Studies on physico-mechanical behavior of thermal insulating coatings for buildings,” in Proceedings of the International Conference on Advanced Materials for Energy Efficient Buildings (AME2B '13), no. TS4, p. 52, 2013.
  70. T. Rettlebach, J. Sauberlich, S. Korder, and J. Fricke, “Thermal conductivity of silica aerogel powders at temperatures from 10 to 275K,” Journal of Non-Crystalline Solids, vol. 186, pp. 278–284, 1995. View at Publisher · View at Google Scholar
  71. J. V. Accorsi, “The impact of carbon black morphology and dispersion on the weatherability of polyethylene,” KGK-Kautschuk und Gummi Kunststoffe, vol. 54, no. 6, pp. 321–326, 2001. View at Google Scholar · View at Scopus
  72. P. Paik, Y. Mastai, I. Kityk, P. Rakus, and A. Gedanken, “Synthesis of amino acid block-copolymer imprinted chiral mesoporous silica and its acoustically-induced optical Kerr effects,” Journal of Solid State Chemistry, vol. 192, pp. 127–131, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. http://www.cabot-corp.com.
  74. M. A. B. Meador, B. N. Nguyen, H. Guo et al., “Aerogels: thinner, lighter, stronger,” 2011, www.nasa.gov/topics/technology/features/aerogels.html.
  75. Aspen Aerogels, “Insulated building materials,” US Patent 7771609, 2010.
  76. Aspen Aerogels, “Insulated building materials,” US Patent 8277676, 2012.
  77. http://www.aerogel.com.
  78. 2011, http://www.chem-eng.kyushu-u.ac.jp/e/research.html.
  79. A.-Y. Jeong, S.-M. Koo, and D.-P. Kim, “Characterization of hydrophobic SiO2 powders prepared by surface modification on wet gel,” Journal of Sol-Gel Science and Technology, vol. 19, no. 1–3, pp. 483–487, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Błaszczyński, A. Ślosarczyk, and M. Morawski, “Synthesis of aerogel by supercritical drying method,” Procedia Engineering, vol. 57, pp. 200–206, 2013. View at Publisher · View at Google Scholar