Table of Contents
Journal of Materials
Volume 2014, Article ID 318262, 8 pages
http://dx.doi.org/10.1155/2014/318262
Research Article

Effect of Sn Addition on Thermal and Optical Properties of    Glass

Department of Physics, Himachal Pradesh University, Summerhill, Shimla 171005, India

Received 10 November 2013; Revised 23 February 2014; Accepted 24 February 2014; Published 27 March 2014

Academic Editor: Te-Hua Fang

Copyright © 2014 Vivek Modgil and V. S. Rangra. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Elliott, C. N. R. Rao, and J. M. Thomas, “The chemistry of the Noncrystalline State,” Angewandte Chemie International Edition, vol. 25, pp. 31–46, 1986. View at Google Scholar
  2. R. M. Mehra, A. Ganjoo, and P. C. Mathur, “Electrical and optical properties of amorphous (Se0.7Te0.3)100-xInx system,” Journal of Applied Physics, vol. 75, no. 11, pp. 7334–7339, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. N. F. Mott and E. A. Davis, Electronic Process in Non-Crystalline Materials, Clarendon, Oxford, UK, 1979.
  4. M. Kastner, D. Adler, and H. Fritzsche, “Valence-alternation model for localized gap states in lone-pair semiconductors,” Physical Review Letters, vol. 37, no. 22, pp. 1504–1507, 1976. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” Journal of the Optical Society of America B: Optical Physics, vol. 15, no. 12, pp. 2946–2950, 1998. View at Google Scholar · View at Scopus
  6. K. Paivasaari, V. K. Tikhomirov, and J. Turunen, “High refractive index chalcogenide glass for photonic crystal applications,” Optics Express, vol. 15, no. 5, pp. 2336–2340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Devasia, S. Kurinec, K. A. Campbell, and S. Raoux, “Influence of Sn Migration on phase transition in GeTe and Ge2Se3 thin films,” Applied Physics Letters, vol. 96, no. 14, Article ID 141908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. E. McNeil, J. M. Mikrut, and M. J. Peters, “Phase separation in Ge1-xSnxSe2 glasses,” Solid State Communications, vol. 62, no. 2, pp. 101–103, 1987. View at Google Scholar · View at Scopus
  9. J. M. Mikrut and L. E. McNeil, “Photostructural changes in bulk amorphous Ge1-xSnxSe2,” Journal of Non-Crystalline Solids, vol. 114, no. 1, pp. 127–129, 1989. View at Google Scholar · View at Scopus
  10. E. A. Kislitskaya and V. F. Kokorina, “Effect of the replacement of germanium by tin on glass formation and the physicochemical properties of glasses in the antimony-germanium-selenium system,” Zhurnal Prikladnoi Khimii, vol. 44, pp. 646–648, 1971, Translated. View at Google Scholar
  11. M. M. Wakkad, E. Kh. Shokr, and Sh. Mohamed, “Crystallization kinetics and some physical properties of as-prepared and annealed Ge-Sb-Se chalcogenide glasses,” Physica Status Solidi A: Applications and Materials, vol. 183, pp. 399–411, 2001. View at Google Scholar
  12. G. Mathew, K. N. Madhusudanan, and J. Philip, “Characteristics of photoconductivity in amorphous GexSb10Se90-x thin films,” Physica Status Solidi A: Applications and Materials, vol. 168, pp. 239–248, 1998. View at Google Scholar
  13. N. B. Maharjan, K. Singh, and N. S. Saxena, “Calorimetric studies in Se75Te25-xSnx chalcogenide glasses,” Physica Status Solidi A: Applications and Materials, vol. 195, no. 2, pp. 305–310, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Kaur and T. Komatsu, “Crystallization behavior of bulk amorphous Se-Sb-In system,” Journal of Materials Science, vol. 36, no. 18, pp. 4531–4533, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. M. S. Kamboj and R. Thangaraj, “Calorimetric studies of bulk Se-Te-Pb glassy system,” The European Physical: Journal Applied Physics, vol. 24, no. 1, pp. 33–36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Bicerano and S. R. Ovshinsky, “Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties,” Journal of Non-Crystalline Solids, vol. 74, no. 1, pp. 75–84, 1985. View at Google Scholar · View at Scopus
  17. M. Lasocka, “The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15,” Materials Science and Engineering, vol. 23, no. 2-3, pp. 173–177, 1976. View at Google Scholar · View at Scopus
  18. H. E. Kissinger, “Variation of peak temperature with heating rate in differential thermal analysis,” Journal of Research of the National Bureau of Standards, vol. 57, pp. 217–221, 1956. View at Google Scholar
  19. H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Analytical Chemistry, vol. 29, no. 11, pp. 1702–1706, 1957. View at Google Scholar · View at Scopus
  20. K. White, R. L. Crane, and J. A. Snide, “Crystallization kinetics of As2-xSbxS3 glass in bulk and thin film form,” Journal of Non-Crystalline Solids, vol. 103, no. 2-3, pp. 210–220, 1988. View at Google Scholar · View at Scopus
  21. C. T. Moynihan, A. J. Easteal, J. Wilder, and J. Tucker, “Dependence of the glass transition temperature on heating and cooling rate,” Journal of Physical Chemistry, vol. 78, no. 26, pp. 2673–2677, 1974. View at Google Scholar · View at Scopus
  22. J. A. Augis and J. E. Bennett, “Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method,” Journal of Thermal Analysis, vol. 13, no. 2, pp. 283–292, 1978. View at Publisher · View at Google Scholar · View at Scopus
  23. J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” Journal of Physics E: Scientific Instruments, vol. 9, no. 11, pp. 1002–1004, 1976. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” Journal of Physics E: Scientific Instruments, vol. 16, no. 12, pp. 1214–1222, 1983. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Tauc, The Optical Properties of Solids, pp. 171–180, North-Holland Publishing, Amsterdam, The Netherlands, 1970.
  26. A. Ganjoo and H. Jain, “Millisecond kinetics of photoinduced changes in the optical parameters of a-As2S3 films,” Physical Review B—Condensed Matter and Materials Physics, vol. 74, no. 2, Article ID 024201, 11 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. M. Wakkad, E. K. Shokr, and S. H. Mohamed, “Optical and calorimetric studies of Ge-Sb-Se glasses,” Journal of Non-Crystalline Solids, vol. 265, no. 1, pp. 157–166, 2000. View at Publisher · View at Google Scholar · View at Scopus