Table of Contents Author Guidelines Submit a Manuscript
Journal of Materials
Volume 2014 (2014), Article ID 362678, 7 pages
http://dx.doi.org/10.1155/2014/362678
Research Article

Synthesis, Growth, and Characterization of Bisglycine Hydrobromide Single Crystal

1Department of Physics, Madha Engineering College, Kundrathur, Chennai, India
2Department of Physics, Sree Sastha Institute of Engineering and Technology, Chembarambakkam, Chennai 600123, India

Received 27 October 2013; Revised 12 June 2014; Accepted 13 June 2014; Published 29 June 2014

Academic Editor: Rodrigo Martins

Copyright © 2014 Koteeswari Pandurangan and Sagadevan Suresh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. N. Moolya and S. M. Dharmapraksh, “Growth and characterization of nonlinear optical diglycinehydrobromide single crystals,” Materials Letters, vol. 61, no. 17, pp. 3559–3562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Ambujam, S. Selvakumar, D. P. Anand, G. Mohamed, and P. Sagayaraj, “Crystal growth, optical, mechanical and electrical properties of organic NLO material γ-glycine,” Crystal Research and Technology, vol. 41, no. 7, pp. 671–677, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. Aggarwal, J. Stephens, A. K. Batra, and R. B. Lal, “Bulk crystal growth and characterization of semiorganic nonlinear optical materials,” Journal of Optoelectronics and Advanced Materials, vol. 5, no. 3, pp. 555–562, 2003. View at Google Scholar · View at Scopus
  4. M. N. Bhat and S. M. Dharmaprakash, “Growth of nonlinear optical γ-glycine crystals,” Journal of Crystal Growth, vol. 236, no. 1–3, pp. 376–380, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. S. Hussaini, N. R. Dhumane, and D. Mahendra Shirsat, “Growth and characterizations of bis glycine hydrogen bromide (BGHB) single crystal: new nonlinear optical material,” Recent Research in Science and Technology, vol. 4, pp. 10–12, 2012. View at Google Scholar
  6. T. Pal and T. Kar, “Optical, mechanical and thermal studies of nonlinear optical crystal l-arginine acetate,” Materials Chemistry and Physics, vol. 91, pp. 343–347, 2005. View at Publisher · View at Google Scholar
  7. N. Vijayan, S. Rajasekaran, G. Bhagavannarayana et al., “Growth and characterization of nonlinear optical amino acid single crystal: L-alanine,” Crystal Growth & Design, vol. 6, no. 11, pp. 2441–2445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds, John Wiley & Sons, New York, NY, USA, 1981.
  9. R. M. Silverstein and F. X. Webster, Spectroscopic Identification of Organic Compounds, Wiley, New York, NY, USA, 6th edition, 1998.
  10. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostran Reenhold, New York, NY, USA, 1945.
  11. D. Jayalakshmi and J. Kumar, “Growth and characterization of Bis Thiourea Zinc Acetate (BTZA),” Crystal Research and Technology, vol. 41, no. 1, pp. 37–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Krishnakumar, S. Sivakumar, R. Nagalakshmi, S. Bhuvaneswari, and M. Rajaboopathi, “Effect of doping an organic molecule ligand on TGS single crystals,” Spectrochimica Acta A, vol. 71, no. 2, pp. 480–485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Krishnakumar, R. Nagalakshmi, and P. Janaki, “Growth and spectroscopic characterization of a new organic nonlinear optical crystal—8-hydroxyquinoline,” Spectrochimica Acta A, vol. 61, no. 6, pp. 1097–1103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Krishnakumar and R. John Xavier, “FT Raman and FT-IR spectral studies of 3-mercapto-1,2,4-triazole,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 60, no. 3, pp. 709–714, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Roshan S., C. Joseph, and M. A. Ittyachen, “Growth and characterization of a new metal-organic crystal: potassium thiourea bromide,” Materials Letters, vol. 49, no. 5, pp. 299–302, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Tigau, V. Ciupina, G. Prodan, G. I. Rusu, C. Gheorghies, and E. Vasile, “Influence of thermal annealing in air on the structural and optical properties of amorphous antimony trisulfide thin films,” Journal of Optoelectronics and Advanced Materials, vol. 6, no. 1, pp. 211–217, 2004. View at Google Scholar · View at Scopus
  17. A. K. Chawla, D. Kaur, and R. Chandra, “Structural and optical characterization of ZnO nanocrystalline films deposited by sputtering,” Optical Materials, vol. 29, no. 8, pp. 995–998, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Surekha, P. Sagayaraj, and K. Ambujam, “Third order nonlinear optical, luminescence and electrical properties of bis glycine hydrobromide single crystals,” Optical Materials, vol. 36, no. 5, pp. 945–949, 2014. View at Publisher · View at Google Scholar
  19. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” Journal of Applied Physics, vol. 39, no. 8, pp. 3798–3813, 1968. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Sampthkrishnan, N. Balamurugan, R. Kumutha, Y. Vidyalakshmi, and S. Muthu, “Growth and characterization of new non linear optical Bis-Glycine Hydro Bromide (BGHB) single crystal,” Journal of Minerals & Materials Characterization & Engineering, vol. 11, no. 6, pp. 597–607, 2012. View at Google Scholar
  21. K. Sugandhi, S. Dinakaran, M. Jose et al., “Crystalline perfection, spectroscopic investigations and transport properties of trisglycine zinc chloride NLO single crystal,” Physica B: Condensed Matter, vol. 405, no. 18, pp. 3929–3935, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. M. Onitsch, “The present status of testing the hardness of materials,” Microscope, vol. 95, pp. 12–14, 1950. View at Google Scholar
  23. J. C. Anderson, Dielectrics, Chapman & Hall, New York, NY, USA, 1964.
  24. K. V. Rao and A. Smakula, “Dielectric properties of cobalt oxide, nickel oxide, and their mixed crystals,” Journal of Applied Physics, vol. 36, no. 6, pp. 2031–2038, 1965. View at Publisher · View at Google Scholar · View at Scopus
  25. K. V. Rao and A. Smakula, “Dielectric properties of alkaline earth fluoride single crystals,” Journal of Applied Physics, vol. 37, no. 1, pp. 319–323, 1966. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Suresh and K. Anand, “Studies on optical, dielectric and electrical conductivity properties of zinc succinate NLO single crystal,” Advances in Applied Science Research, vol. 3, no. 2, pp. 815–820, 2012. View at Google Scholar
  27. M. Senthil Pandian, N. Balamurugan, G. Bhagavannarayana, and P. Ramasamy, “Characterization of 0 1 0 directed KAP single crystals grown by Sankaranarayanan-Ramasamy (SR) method,” Journal of Crystal Growth, vol. 310, no. 18, pp. 4143–4147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. L. Bhat, “X-ray topographic assessment of dislocations in crystals grown from solution,” Progress in Crystal Growth and Characterization, vol. 11, no. 2, pp. 57–87, 1985. View at Publisher · View at Google Scholar · View at Scopus
  29. K. K. Rao and V. Surender, “Surface studies on as-grown (111) faces of sodium bromate crystals,” Bulletin of Materials Science, vol. 24, no. 6, pp. 665–669, 2001. View at Publisher · View at Google Scholar · View at Scopus