Research Article  Open Access
Jiayu Shen, "Uncertain SingleMachine Scheduling with Deterioration and Learning Effect", Journal of Mathematics, vol. 2020, Article ID 7176548, 10 pages, 2020. https://doi.org/10.1155/2020/7176548
Uncertain SingleMachine Scheduling with Deterioration and Learning Effect
Abstract
A singlemachine scheduling problem with deterioration and learning effect is studied in the present paper. The processing time and due date are considered uncertain variables due to lack of historical data. The aim is to minimize the makespan, total completion time, total weight completion time, and maximum lateness under an uncertain environment. To address the problem in an uncertain environment, the expected value model and pessimistic value model are developed. These models can be converted into equivalent models based on the inverse distribution method. It is proved that the corresponding dispatching rules can solve the problem optimally under different objective criteria. Finally, sensitivity analysis is used to illustrate the effectiveness of these rules.
1. Introduction
Singlemachine scheduling is the basis of all scheduling problems, and many complex scheduling problems can be simplified into several singlemachine problems. In recent years, many literature studies on scheduling are mainly concerned with the single scheduling problem. The traditional scheduling problem usually assumes that the processing time is a constant. This assumption may be impractical in many cases because the processing time may be prolonged or shortened as time passes. Some examples about deterioration or learning effect were mentioned in [1]. Raw material in the queue waiting to be processed deteriorates as time passes, which may lead to a certain loss (job deterioration). On an assembly line, workers become more skilled over time (learning effect). Many scholars had studied the scheduling problem with deterioration and learning effect [2–17].
Since environmental impact and resource constraint, emergencies can lead to uncertainty in processing time and due date. Many researchers studied the scheduling problems under stochastic or fuzzy environment. Optimal permutation policies in singlemachine stochastic scheduling problems with learning effects were investigated [18]. A sequencedependent singlemachine scheduling problem with different learning effects was considered [19]. The processing times, setup times, and reliabilities/unreliabilities were considered as random variables. Li [20] studied a singlemachine scheduling problem with random processing time and jobbased learning effect recently. Ahmadizar and Hosseini [21, 22] considered singlemachine scheduling problems with a positionbased learning effect and fuzzy processing times. Toksari and Arık [23] considered singlemachine scheduling problems under positiondependent fuzzy learning effect with fuzzy processing times, and polynomially solvable algorithms for different confidence levels for these problems were proposed.
Most people believe that probability distribution is easy to obtain from the historical data, and then, we should use probability theory. However, the distribution function obtained in most practical problems is not close enough to the actual frequency. In this case, we have to invite the domain expert to assess the degree of belief that each event will occur. For example, a worker can only assess the processing time of a job based on his past experience. To address personal belief degrees, uncertainty theory was founded by Liu [24] in 2007 and refined it in 2010 [25]. Uncertainty theory is a branch of axiomatic mathematics. It has been developed in many fields such as uncertain calculus [15, 26–28], uncertain risk analysis [29–31], uncertain differential equation [32–35], and uncertain programming [36–40].
This paper studies the impacts of both deterioration and learning effect in a singlemachine scheduling problem under an uncertain environment. The processing time and due date are considered uncertain variables. For example, in the rough machining operation process, due to machine failure, operation error, environmental impact, and many other uncertainties, workers usually evaluate the processing time according to their own experience. Much asymmetric information in the production and logistics process of the supply chain may lead to uncertainty and cause delays of the due date. It is more suitable for production practice to assume these parameters to be uncertain variables, which can ensure the feasibility and effectiveness of scheduling. The objective functions are makespan, total completion time, total weight completion time, and maximum lateness, respectively. Under different decision criteria, the expected value model and pessimistic value model are developed. Once uncertain distributions are given, the deterministic equivalence of the models is obtained by the uncertainty theory. To address the models effectively, corresponding dispatching rules are proposed.
The rest of the paper is organized as follows. To understand this paper better, basic definitions and results about uncertainty theory are introduced in Section 2. In Section 3, the problem under an uncertain environment is described and the mathematical models are constructed. In Section 4, to facilitate computation, the equivalence of the models is investigated and dispatching rules for the optimal solutions are presented. Section 5 gives an example of sensitivity analysis.
2. Preliminary
To describe an uncertain variable which refers to human uncertainty, Liu [24] established the uncertainty theory and it has been developed well up to now. Some necessary preliminary concepts about uncertainty theory are given.
Let be a nonempty set, is a algebra over , and each element in is called an event. A set function from to is called an uncertain measure if it satisfies normality axiom, duality axiom, subadditivity axiom, and product axiom [24, 41].
The uncertain distribution of an uncertain variable is defined by for any real number . The uncertain variables are said to be independence (Liu [41]) iffor any Borel sets of real numbers.
Uncertain measure has the following two useful properties: (i) for any events , we have , and (ii) for any events and , we have
Definition 1. (see [24]). Let ξ be an uncertain variable, and . Thenis called the optimistic value to , andis called the pessimistic value to .
Definition 2 (see [24]). An uncertain distribution is said to be regular if its inverse function exists and is unique for each . Then, the inverse function is called the inverse uncertainty distribution of .
Theorem 1 (see [24]). Assume the constraint function is strictly increasing with respect to and strictly decreasing with respect to . If are independent uncertain variables with uncertainty distributions , respectively, then the chance constraintholds if and only if
Theorem 2 (see [24]). Let be an uncertain variable. Then, the expected value of is defined byprovided that at least one of the two integrals is finite.
If and are independent uncertain variables, thenholds for any real numbers and .
3. Mathematical Models
The definition of the uncertain singlemachine scheduling problem with deterioration and learning effect is given as follows.
Assume that independent and nonpreemptive jobs are processed on a single machine. All jobs are available at time 0. Only one job can be processed at a time. The basic processing time of job is , the due date of job is , and the weight of job is . The deterioration function is an increasing function and is a differentiable convex function. We consider the similar actual processing time proposed by Lee [42]. The actual processing time of job is , where is the learning coefficient and is the start processing time of job .
The processing time, due date, and learning coefficient are assumed to be uncertain variables. In the real operating environment, the forgotten effect leads to job deterioration due to the frequent rotation of the task. With the increase of time and the accumulation of experience, workers become more skilled in operating the machine. Before constructing the mathematical model of the uncertain singlemachine problem, the parameters for models are given as follows (Table 1 lists notations for the proposed models):

Decision variables:
The relationship of variables is as follows:
Equation (11) define the actual processing time of the th job on the machine. Clearly, the processing time changes with the position. Equation (12) define the completion time of the th job on the machine. Equation (13) reveal the relationship between the completion times.
When the processing time, due date, and learning coefficient are uncertain variables, how can we obtain an optimal solution in such an uncertain environment? First, we can use the uncertainty expectation to measure the uncertain variables. The expected value is the average of the uncertain variables on the uncertainty measure.
The problem is modeled under the expected value criterion:
This model minimizes the expected values of these objective functions subject to some constraints, respectively. Equation (14) ensure that each job can only be assigned to one position on the machine. Equation (14) ensure that each position can only process one job and there is no spare time on the machine. Constraint (14) gives the range of the decision variables.
In reality, the decision maker always tries to find the optimal solution within a small deviation. A preset target is determined such that there exists a solution satisfying . For example, let , the decision maker should determine a target and then choose a solution which satisfies . It means that if the decision maker chooses the solution , the objective function will be less than or equal to at least . A pessimistic value model is conceived:where are preset confidence levels.
This model is to calculate the pessimistic value to . The detailed proof will be obtained in the next section. Constraint (15) ensure that the conditions hold under confidence levels , respectively.
4. Equivalence of Uncertain Models
It is noted that the above two models contain many uncertain variables, so it is difficult to solve them directly. In most uncertain programming literature studies, GA and PSO are used to find the approximate optimal solution. Although the effectiveness of these approaches is often illustrated by numerical experiments, the preciseness and generality of these approaches are not satisfactory. The uncertain models can be converted into deterministic forms with the help of uncertainty theory.
Theorem 3. The expected value model can be converted into the following model equivalently:where represents the inverse uncertainty distribution of .
Proof. Since the expectation operator is linear and according to Jensen’s inequality, it yieldsSimilarly, other objective functions can be obtained.
Theorem 4. The pessimistic value model can be converted into the following model equivalently:where are preset confidence levels and represents the inverse uncertainty distribution of .
Proof. Let be independent uncertain variables with regular uncertainty distributions , respectively. Assume is strictly increasing with respect to , , …, and strictly decreasing with respect to . Let , and according to Definition 2, is an uncertain variable with the inverse uncertainty distributionwhich yields .
is equivalent to . Then, it yieldsSince the uncertainty distribution is an increasing function, it yields is equivalent towhere is a given confidence level.
According to the above conclusion, we can obtain the equivalent form of the pessimistic value model:where are preset confidence levels and represents the inverse uncertainty distribution of .
According to the definition of optimistic value (Definition 1), equation (23) is equivalent to equation (18), thus (23) are equivalent to equation (18), equations (23) are equivalent to equation (18), equations (23) are equivalent to equation (18). Thus, the theorem is proved.
Theorem 5. The optimal schedule of the makespan problem under the uncertain environment is obtained by the shortest processing time (SPT) rule.
Proof. An optimal schedule which consists of two adjacent jobs ( precedes ) is considered. Assume the start processing time of job is . Let and represent the completion times of the jobs and , respectively.(1)Under the expectation value criterion : By exchanging the position of two jobs, a schedule is obtained: By comparing their sizes and according to Lagrange mean value theorem, it yields where and . Because , , and , it yields . It implies that the expected makespan under is smaller than that under . This result contradicts the optimality of .(2)Under the pessimistic value criterion , , and : Because , and according to the two useful properties of uncertain measure, it yields It implies that the pessimistic value of makespan under is smaller than that under . This result contradicts the optimality of . Hence, the SPT rule gets the optimal solution. The theorem is proved.
Theorem 6. The optimal schedule of problem under the uncertain environment is obtained by the SPT rule.
Proof. Theorem 5 implies that the start processing time of jobs after and can be advanced by changing the order. Therefore, the in is less than that in . This result contradicts the optimality of . The theorem is proved.
Theorem 7. The optimal schedule of problem under the uncertain environment is obtained by the WSPT rule.
Proof. An optimal schedule which consists of two adjacent jobs ( precedes ) is considered, and the jobs are not arranged according to the WSPT rule. Hence, we have .(1)Under the expectation value criterion: By exchanging the position of two jobs, a schedule is obtained: Similar to Theorem 5, it yields Because , , , , and , it yields . It implies that the expected weighted sum under is smaller than that under . This result contradicts the optimality of .(2)Under the pessimistic value criterion , , , and . Because , it yields : Because then according to the two useful properties of uncertain measure, it yields It implies that the pessimistic value of under is smaller than that under . This result contradicts the optimality of . Hence, the SPT rule gets the optimal solution. The theorem is proved.
Theorem 8. The optimal schedule of problem under uncertain environment is obtained by the EDD rule.
Proof. An optimal schedule which consists of two adjacent jobs ( precedes ) is considered, and the jobs are not arranged according to the EDD rule.(1)Under the expectation value criterion, we have . It implies that : By exchanging the position of two jobs, a schedule is obtained: Because and , it yields It implies that EDD is optimal.(2)Under the pessimistic value criterion . Because , it yields . And because it yields It implies that the optimal solution can be obtained by the EDD rule. The theorem is proved.Note that these theorems have a higher dependence on the confidence level in the case of pessimistic value. For instance, the condition that the confidence level is greater than 0.75 is sufficient for the result of Theorem 7. If the confidence level is less than 0.75, the required result may not be deduced based on the current method in the proof of Theorem 7. Also the confidence level greater than 0.75 shows that the conclusion holds at a high confidence level. It is reasonable since we generally do not consider the situation that a result holds at a lower confidence level in reality. The pessimistic value case also shows that the decision maker is more inclined to believe that the rule can effectively obtain the optimal solution when faced with making decisions.
5. Sensitivity Analysis
Numerical examples are conducted to investigate the sensitivity of these confidence levels. Assume that there are 30 jobs; ; processing time of job is generated from uncertain normal distribution: for ; due date of job is generated from uncertain normal distribution: for ; ; obeys normal distribution ;and deterioration function . To examine the sensitivity of confidence levels , , Figures 1–4 indicate that the objective values are nondecreasing with respect to these confidence levels. It can be seen that these confidence levels must be greater than 0.6. Since the confidence level is too low, there is no guarantee that the conclusion of the theorem will be established in the case of pessimistic value.
6. Conclusions
An uncertain singlemachine scheduling problem with deterioration and learning effect was studied in this paper. The processing time, due date, and learning coefficient were considered uncertain variables. Two different criteria (expected value and pessimistic value) multiobjective programming models were proposed. The equivalence of the two models was proved based on the uncertainty inverse distribution method. Due to the complexity of the problem, different dispatching rules was used to solve the problem. It was proved that the SPT rule can solve the makespan and total completion time problems under different uncertain criteria optimally, and the total weight completion time and maximum lateness can be solved by WSPT and EDD rules optimally, respectively. The results also suggested that the decision maker will choose the scheme with relatively high confidence level. At the last, the sensitivity analysis revealed that the objective function values are nondecreasing with respect to the confidence levels. For future work, it is an interesting research to investigate the influence of these uncertain variables on other workshop environment (e.g., parallel machine, flow shop, and job shop).
Data Availability
The data used to support the findings of this study are included within the article.
Conflicts of Interest
The author declares that there are no conflicts of interest regarding the publication of this paper.
Acknowledgments
This work was supported by the National Natural Science Foundation of China (no. 61673011) and Research Foundation of NIIT (YK181002 and YK181003).
References
 K. McKay, M. Pinedo, and S. Webster, “Practicefocused research issues for scheduling systems,” Production & Operations Management, vol. 11, pp. 249–258, 2002. View at: Google Scholar
 J. Bai, Z.R. Li, and X. Huang, “Singlemachine group scheduling with general deterioration and learning effects,” Applied Mathematical Modelling, vol. 36, no. 3, pp. 1267–1274, 2012. View at: Publisher Site  Google Scholar
 T. C. E. Cheng, S.C. Tseng, P.J. Lai, and W.C. Lee, “Singlemachine scheduling with accelerating learning effects,” Mathematical Problems in Engineering, vol. 2013, Article ID 816235, 7 pages, 2013. View at: Publisher Site  Google Scholar
 X. Huang, G. Li, Y. Huo, and P. Ji, “Single machine scheduling with general timedependent deterioration, positiondependent learning and pastsequencedependent setup times,” Optimization Letters, vol. 7, no. 8, pp. 1793–1804, 2013. View at: Publisher Site  Google Scholar
 W.H. Kuo and D.L. Yang, “Singlemachine scheduling problems with the timedependent learning effect,” Computers & Mathematics with Applications, vol. 53, no. 11, pp. 1733–1739, 2007. View at: Publisher Site  Google Scholar
 W.C. Lee, “Singlemachine scheduling with pastsequencedependent setup times and general effects of deterioration and learning,” Optimization Letters, vol. 8, no. 1, pp. 135–144, 2014. View at: Publisher Site  Google Scholar
 M. Toksarı, D. Oron, and E. Güner, “Single machine scheduling problems under the effects of nonlinear deterioration and timedependent learning,” Mathematical and Computer Modelling, vol. 50, no. 34, pp. 401–406, 2009. View at: Publisher Site  Google Scholar
 J.B. Wang, “Singlemachine scheduling problems with the effects of learning and deterioration,” Omega, vol. 35, no. 4, pp. 397–402, 2007. View at: Publisher Site  Google Scholar
 X. Wang and T. C. Edwin Cheng, “Singlemachine scheduling with deteriorating jobs and learning effects to minimize the makespan,” European Journal of Operational Research, vol. 178, no. 1, pp. 57–70, 2007. View at: Publisher Site  Google Scholar
 J.B. Wang, Y. Jiang, and G. Wang, “Singlemachine scheduling with pastsequencedependent setup times and effects of deterioration and learning,” The International Journal of Advanced Manufacturing Technology, vol. 41, no. 1112, pp. 1221–1226, 2009. View at: Publisher Site  Google Scholar
 J.B. Wang, “Single machine scheduling with a timedependent learning effect and deteriorating jobs,” Journal of the Operational Research Society, vol. 60, no. 4, pp. 583–586, 2009. View at: Publisher Site  Google Scholar
 J.B. Wang and C. Wang, “Singlemachine duewindow assignment problem with learning effect and deteriorating jobs,” Applied Mathematical Modelling, vol. 35, no. 8, pp. 4017–4022, 2011. View at: Publisher Site  Google Scholar
 L.Y. Wang and E.M. Feng, “A note on singlemachine scheduling problems with the effects of deterioration and learning,” The International Journal of Advanced Manufacturing Technology, vol. 59, no. 5–8, pp. 539–545, 2012. View at: Publisher Site  Google Scholar
 C.C. Wu and W.C. Lee, “Singlemachine groupscheduling problems with deteriorating setup times and jobprocessing times,” International Journal of Production Economics, vol. 115, no. 1, pp. 128–133, 2008. View at: Publisher Site  Google Scholar
 D.L. Yang and W.H. Kuo, “Singlemachine scheduling with both deterioration and learning effects,” Annals of Operations Research, vol. 172, no. 1, pp. 315–327, 2009. View at: Publisher Site  Google Scholar
 Y. Yin and D. Xu, “Some singlemachine scheduling problems with general effects of learning and deterioration,” Computers & Mathematics with Applications, vol. 61, no. 1, pp. 100–108, 2011. View at: Publisher Site  Google Scholar
 X. Zhang and G. Yan, “Singlemachine group scheduling problems with deteriorated and learning effect,” Applied Mathematics and Computation, vol. 216, no. 4, pp. 1259–1266, 2010. View at: Publisher Site  Google Scholar
 Y. Zhang, X. Wu, and X. Zhou, “Stochastic scheduling problems with general positionbased learning effects and stochastic breakdowns,” Journal of Scheduling, vol. 16, no. 3, pp. 331–336, 2013. View at: Publisher Site  Google Scholar
 H. M. Soroush, “Stochastic bicriteria single machine scheduling with sequencedependent job attributes and jobdependent learning effects,” European Journal of Industrial Engineering, vol. 8, no. 4, pp. 421–456, 2014. View at: Publisher Site  Google Scholar
 H. Li, “Stochastic singlemachine scheduling with learning effect,” IEEE Transactions on Engineering Management, vol. 64, no. 1, pp. 94–102, 2017. View at: Publisher Site  Google Scholar
 F. Ahmadizar and L. Hosseini, “Singlemachine scheduling with a positionbased learning effect and fuzzy processing times,” The International Journal of Advanced Manufacturing Technology, vol. 56, no. 5–8, pp. 693–698, 2011. View at: Publisher Site  Google Scholar
 F. Ahmadizar and L. Hosseini, “Minimizing makespan in a singlemachine scheduling problem with a learning effect and fuzzy processing times,” The International Journal of Advanced Manufacturing Technology, vol. 65, no. 1–4, pp. 581–587, 2013. View at: Publisher Site  Google Scholar
 M. D. Toksari and O. A. Arık, “Single machine scheduling problems under positiondependent fuzzy learning effect with fuzzy processing times,” Journal of Manufacturing Systems, vol. 45, pp. 159–179, 2017. View at: Publisher Site  Google Scholar
 B. Liu, Uncertainty Theory, SpringerVerlag, Berlin, Germany, 2nd edition, 2007.
 B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, SpringerVerlag, Berlin, Germany, 2010.
 X. Chen and D. A. Ralescu, “Liu process and uncertain calculus,” Journal of Uncertainty Analysis and Applications, vol. 1, no. 1, 2013. View at: Publisher Site  Google Scholar
 X. Chen, “Uncertain calculus with finite variation processes,” Soft Computing, vol. 19, no. 10, pp. 2905–2912, 2015. View at: Publisher Site  Google Scholar
 K. Yao, “Multidimensional uncertain calculus with liu process,” Journal of Uncertain Systems, vol. 8, no. 4, pp. 244–254, 2014. View at: Google Scholar
 Z. Chen, Y. Lan, and R. Zhao, “Impacts of risk attitude and outside option on compensation contracts under different information structures,” Fuzzy Optimization and Decision Making, vol. 17, no. 1, pp. 13–47, 2018. View at: Publisher Site  Google Scholar
 Y. Liu and D. A. Ralescu, “Valueatrisk in uncertain random risk analysis,” Information Sciences, vol. 391392, pp. 1–8, 2017. View at: Publisher Site  Google Scholar
 J. Zhou, Y. Liu, X. Zhang, X. Gu, and D. Wang, “Uncertain risk aversion,” Journal of Intelligent Manufacturing, vol. 28, no. 3, pp. 615–624, 2017. View at: Publisher Site  Google Scholar
 X. Chen and Y. Ning, “The th moment exponential stability of uncertain differential equation,” Journal of Intelligent & Fuzzy Systems, vol. 33, no. 2, pp. 725–732, 2017. View at: Publisher Site  Google Scholar
 Y. Feng, X. Yang, and G. Cheng, “Stability in mean for multidimensional uncertain differential equation,” Soft Computing, vol. 22, no. 17, pp. 5783–5789, 2018. View at: Publisher Site  Google Scholar
 H. Liu and W. Fei, “Neutral uncertain delay differential equations,” Information: An International Interdisciplinary Journal, vol. 16, no. 2, pp. 1225–1232, 2013. View at: Google Scholar
 K. Yao, J. Gao, and Y. Gao, “Some stability theorems of uncertain differential equation,” Fuzzy Optimization and Decision Making, vol. 12, no. 1, pp. 3–13, 2013. View at: Publisher Site  Google Scholar
 Q. Cui and Y. Sheng, “Uncertain programming model for solid transportation problem,” Information: An International Interdisciplinary Journal, vol. 16, no. 2, pp. 1207–1214, 2013. View at: Google Scholar
 R. Mu, Y. Lan, and W. Tang, “An uncertain contract model for rural migrant worker’s employment problems,” Fuzzy Optimization and Decision Making, vol. 12, no. 1, pp. 29–39, 2013. View at: Publisher Site  Google Scholar
 J. Shen and Y. Zhu, “Uncertain flexible flow shop scheduling problem subject to breakdowns,” Journal of Intelligent & Fuzzy Systems, vol. 32, no. 1, pp. 207–214, 2017. View at: Publisher Site  Google Scholar
 J. Shen, “An uncertain parallel machine problem with deterioration and learning effect,” Computational and Applied Mathematics, vol. 38, no. 1, pp. 1–17, 2019. View at: Publisher Site  Google Scholar
 X. Zhang, L. Li, and G. Meng, “A modified uncertain entailment model,” Journal of Intelligent & Fuzzy Systems, vol. 27, no. 1, pp. 549–553, 2014. View at: Publisher Site  Google Scholar
 B. Liu, “Some research problems in uncertainty theory,” Journal of Uncertain Systems, vol. 3, no. 1, pp. 3–10, 2009. View at: Google Scholar
 W. Lee, “A note on deteriorating jobs and learning in singlemachine scheduling problems,” International Journal of Business and Economics, vol. 3, pp. 83–89, 2004. View at: Google Scholar
Copyright
Copyright © 2020 Jiayu Shen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.