Journal of Mathematics

Data-Driven Operations Research in Supply Chain Management 2022


Publishing date
01 Feb 2023
Status
Closed
Submission deadline
30 Sep 2022

Lead Editor
Guest Editors

1Nanjing University of Information Science and Technology, Nanjing, China

2Shanghai University, Shanghai, China

3Qufu Normal University, Jining, China

This issue is now closed for submissions.

Data-Driven Operations Research in Supply Chain Management 2022

This issue is now closed for submissions.

Description

Operations research widely applies existing scientific and technological knowledge and mathematical methods to solve specific problems in supply chain management and provides a basis for decision-makers to choose the best decision. The basic methods of operations research include mathematical methods, statistical methods, computer science methods, etc. In particular, optimization methods are very essential methods. In recent years, operations research has been continuously innovated and developed. New models, new theories, and new methods have emerged in the research. They have provided solutions for various complex supply chain management problems. For instance, they have solved complex supply chain management problems in terms of linear and nonlinear, continuous, and discrete, certainty and uncertainty systems.

Supply chain management research has become widely popular. However, there are still some interesting and challenging problems in technology and methods that are worth further exploring. Data-driven operations research is one of the most popular trends in current academic research. Due to the lack of a rigorous theoretical system, there is no unified definition. Data-driven is to use data as a means of production of extracted features through scientific methods and apply them to problems to be solved. Data-driven methods have certain applicability and advantages in the research of supply chain management. Therefore, there is a need for more scholars to conduct research and drive innovation in supply chain management by using operations research from a data-driven perspective.

The aim of this Special Issue is to bring together original research and review articles discussing the latest developments in data-driven operations research in supply chain management. We welcome submissions that present new ideas and discuss the future of operations research in supply chain management. Research including novel mathematical theories, methods, and applications addressing challenges in data-driven operations research within supply chain management is encouraged.

Potential topics include but are not limited to the following:

  • Operations research and regression in supply chain management
  • Operations research and clustering in supply chain management
  • Operations research and classification in supply chain management
  • Operations research and outlier detection in supply chain management
  • Data-driven supply chain management
  • Emergency management in supply chain management
  • Data envelopment analysis in supply chain management
  • Group decision-making analysis in supply chain management
  • Emergency facilities location and material scheduling in supply chain management
  • Multi-criteria decision analysis and application in supply chain management
  • Robust optimization in supply chain management
  • Stochastic optimization in supply chain management
  • Fuzzy programming in supply chain management
Journal of Mathematics
 Journal metrics
See full report
Acceptance rate32%
Submission to final decision58 days
Acceptance to publication32 days
CiteScore0.900
Journal Citation Indicator1.000
Impact Factor1.555
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.