Table of Contents Author Guidelines Submit a Manuscript
Journal of Marine Biology
Volume 2011 (2011), Article ID 730715, 9 pages
http://dx.doi.org/10.1155/2011/730715
Review Article

Clade D Symbiodinium in Scleractinian Corals: A “Nugget” of Hope, a Selfish Opportunist, an Ominous Sign, or All of the Above?

Hawaii Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawaii at Mānoa, HI 96734, USA

Received 2 July 2010; Accepted 30 September 2010

Academic Editor: Kim Selkoe

Copyright © 2011 Michael Stat and Ruth D. Gates. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Freudenthal, “Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology,” Journal of Protozoology, vol. 9, pp. 45–52, 1962. View at Google Scholar
  2. R. Trench, “Diversity of symbiotic dinoflagellates and the evolution of microalgal-invertebrate symbioses,” in Proceedings of the 8th International Coral Reef Symposium, vol. 2, pp. 1275–1286, 1997.
  3. L. Muscatine, “Glycerol excretion by symbiotic algae from corals and tridacna and its control by the host,” Science, vol. 156, no. 3774, pp. 516–519, 1967. View at Google Scholar · View at Scopus
  4. L. Muscatine and J. Porter, “Reef corals: mutualistic symbioses adapted to nutrient-poor environments,” Bioscience, vol. 27, pp. 454–460, 1977. View at Google Scholar
  5. C. J. Bentis, L. Kaufman, and S. Golubic, “Endolithic fungi in reef-building corals (order: Scleractinia) are common, cosmopolitan, and potentially pathogenic,” Biological Bulletin, vol. 198, no. 2, pp. 254–260, 2000. View at Google Scholar · View at Scopus
  6. F. Rohwer, V. Seguritan, F. Azam, and N. Knowlton, “Diversity and distribution of coral-associated bacteria,” Marine Ecology Progress Series, vol. 243, pp. 1–10, 2002. View at Google Scholar · View at Scopus
  7. L. Wegley, Y. Yu, M. Breitbart, V. Casas, D. I. Kline, and F. Rohwer, “Coral-associated Archaea,” Marine Ecology Progress Series, vol. 273, pp. 89–96, 2004. View at Google Scholar · View at Scopus
  8. N. L. Patten, P. L. Harrison, and J. G. Mitchell, “Prevalence of virus-like particles within a staghorn scleractinian coral (Acropora muricata) from the Great Barrier Reef,” Coral Reefs, vol. 27, no. 3, pp. 569–580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. P. Hughes, A. H. Baird, D. R. Bellwood et al., “Climate change, human impacts, and the resilience of coral reefs,” Science, vol. 301, no. 5635, pp. 929–933, 2003. View at Publisher · View at Google Scholar
  10. O. Hoegh-Guldberg, “Climate change, coral bleaching and the future of the world's coral reefs,” Marine and Freshwater Research, vol. 50, no. 8, pp. 839–866, 1999. View at Google Scholar
  11. O. Hoegh-Guldberg, P. J. Mumby, A. J. Hooten et al., “Coral reefs under rapid climate change and ocean acidification,” Science, vol. 318, no. 5857, pp. 1737–1742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. W. Porter, W. K. Fitt, H. J. Spero, C. S. Rogers, and M. W. White, “Bleaching in reef corals: physiological and stable isotopic responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 23, pp. 9342–9346, 1989. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Hoegh-Guldberg and G. J. Smith, “The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana,” Journal of Experimental Marine Biology and Ecology, vol. 129, no. 3, pp. 279–303, 1989. View at Google Scholar · View at Scopus
  14. W. K. Fitt and M. E. Warner, “Bleaching patterns of four species of Caribbean reef corals,” Biological Bulletin, vol. 189, no. 3, pp. 298–307, 1995. View at Google Scholar · View at Scopus
  15. J. F. Bruno, E. R. Selig, K. S. Casey et al., “Thermal stress and coral cover as drivers of coral disease outbreaks,” PLoS Biology, vol. 5, no. 6, pp. 1220–1227, 2007. View at Publisher · View at Google Scholar
  16. J. A. Kleypas, J. W. McManu, and L. A. B. Mene, “Environmental limits to coral reef development: Where do we draw the line?” American Zoologist, vol. 39, no. 1, pp. 146–159, 1999. View at Google Scholar
  17. J. C. Orr, V. J. Fabry, O. Aumont et al., “Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms,” Nature, vol. 437, no. 7059, pp. 681–686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. P. W. Glynn, “Coral reef bleaching: ecological perspectives,” Coral Reefs, vol. 12, no. 1, pp. 1–17, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. T. P. Hughes, “Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef,” Science, vol. 265, no. 5178, pp. 1547–1551, 1994. View at Google Scholar · View at Scopus
  20. A. Kushmaro, Y. Loya, M. Fine, and E. Rosenberg, “Bacterial infection and coral bleaching,” Nature, vol. 380, no. 6573, p. 396, 1996. View at Google Scholar · View at Scopus
  21. NOAA, Coral Reef Conservation Program Goals & Objectives 2010–2015, NOAA Coral Reef Conservation Program, Silver Spring, Md, USA, 2009.
  22. Y. Loya, K. Sakai, K. Yamazato, Y. Nakano, H. Sambali, and R. Van Woesik, “Coral bleaching: the winners and the losers,” Ecology Letters, vol. 4, no. 2, pp. 122–131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. J. C. Mieog, J. L. Olsen, R. Berkelmans, S. A. Bleuler-Martinez, B. L. Willis, and M. J. H. van Oppen, “The roles and interactions of symbiont, host and environment in defining coral fitness,” PLoS ONE, vol. 4, no. 7, article e6364, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Rowan, “Thermal adaptation in reef coral symbionts,” Nature, vol. 430, no. 7001, p. 742, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Berkelmans and M. J. H. Van Oppen, “The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change,” Proceedings of the Royal Society B, vol. 273, no. 1599, pp. 2305–2312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. K. A. Puglise and R. Kelty, NOAA Coral Reef Ecosystem Research Plan for Fiscal Years 2007–2011, NOAA Coral Reef Conservation Program, Silver Spring, Md, USA, 2007.
  27. M. Stat, D. Carter, and O. Hoegh-Guldberg, “The evolutionary history of Symbiodinium and scleractinian hosts—symbiosis, diversity, and the effect of climate change,” Perspectives in Plant Ecology, Evolution and Systematics, vol. 8, no. 1, pp. 23–43, 2006. View at Publisher · View at Google Scholar
  28. R. Rowan and D. A. Powers, “Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae),” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 8, pp. 3639–3643, 1992. View at Google Scholar · View at Scopus
  29. M. Stat, E. Morris, and R. D. Gates, “Functional diversity in coral-dinoflagellate symbiosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 27, pp. 9256–9261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Pochon and R. D. Gates, “A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai'i,” Molecular Phylogenetics and Evolution, vol. 56, no. 1, pp. 492–497, 2010. View at Publisher · View at Google Scholar
  31. D. J. Thornhill, T. C. Lajeunesse, and S. R. Santos, “Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates,” Molecular Ecology, vol. 16, no. 24, pp. 5326–5340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Stat, X. Pochon, R. O. M. Cowie, and R. D. Gates, “Specificity in communities of Symbiodinium in corals from Johnston Atoll,” Marine Ecology Progress Series, vol. 386, pp. 83–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. T. C. LaJeunesse, D. T. Pettay, E. M. Sampayo et al., “Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium,” Journal of Biogeography, vol. 37, no. 5, pp. 785–800, 2010. View at Publisher · View at Google Scholar
  34. T. C. LaJeunesse, ““Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition,” Molecular Biology and Evolution, vol. 22, no. 3, pp. 570–581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. C. LaJeunesse, W. K. W. Loh, R. Van Woesik, O. Hoegh-Guldberg, G. W. Schmidt, and W. K. Fitt, “Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean,” Limnology and Oceanography, vol. 48, no. 5, pp. 2046–2054, 2003. View at Google Scholar · View at Scopus
  36. T. C. LaJeunesse, R. Bhagooli, M. Hidaka et al., “Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients,” Marine Ecology Progress Series, vol. 284, pp. 147–161, 2004. View at Google Scholar · View at Scopus
  37. T. C. LaJeunesse, D. J. Thornhill, E. F. Cox, F. G. Stanton, W. K. Fitt, and G. W. Schmidt, “High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii,” Coral Reefs, vol. 23, no. 4, pp. 596–603, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Abrego, M. J. H. Van Oppen, and B. L. Willis, “Highly infectious symbiont dominates initial uptake in coral juveniles,” Molecular Ecology, vol. 18, no. 16, pp. 3518–3531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. T. C. LaJeunesse, “Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs,” Marine Biology, vol. 141, no. 2, pp. 387–400, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. X. Pochon, L. Garcia-Cuetos, A. C. Baker, E. Castella, and J. Pawlowski, “One-year survey of a single Micronesian reef reveals extraordinarily rich diversity of Symbiodinium types in soritid foraminifera,” Coral Reefs, vol. 26, no. 4, pp. 867–882, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. A. C. Baker, C. J. Starger, T. R. McClanahan, and P. W. Glynn, “Corals' adaptive response to climate change,” Nature, vol. 430, no. 7001, p. 741, 2004. View at Google Scholar
  42. A. M. Jones, R. Berkelmans, M. J. H. Van Oppen, J. C. Mieog, and W. Sinclair, “A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization,” Proceedings of the Royal Society B, vol. 275, no. 1641, pp. 1359–1365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. T. A. Oliver and S. R. Palumbi, “Distributions of stress-resistant coral symbionts match environmental patterns at local but not regional scales,” Marine Ecology Progress Series, vol. 378, pp. 93–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. W. W. Toller, R. Rowan, and N. Knowlton, “Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths,” Biological Bulletin, vol. 201, no. 3, pp. 348–359, 2001. View at Google Scholar · View at Scopus
  45. K. E. Fabricius, J. C. Mieog, P. L. Colin, D. Idip, and M. J. H. Van Oppen, “Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories,” Molecular Ecology, vol. 13, no. 8, pp. 2445–2458, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. T. C. LaJeunesse, H. R. Bonilla, M. E. Warner, M. Wills, G. W. Schmidt, and W. K. Fitt, “Specificity and stability in high latitude eastern Pacific coral-algal symbioses,” Limnology and Oceanography, vol. 53, no. 2, pp. 719–727, 2008. View at Google Scholar · View at Scopus
  47. B. S. Halpern, S. Walbridge, K. A. Selkoe et al., “A global map of human impact on marine ecosystems,” Science, vol. 319, no. 5865, pp. 948–952, 2008. View at Publisher · View at Google Scholar
  48. Y.-T. Lien, Y. Nakano, S. Plathong, H. Fukami, J.-T. Wang, and C. A. Chen, “Occurrence of the putatively heat-tolerant Symbiodinium phylotype D in high-latitudinal outlying coral communities,” Coral Reefs, vol. 26, no. 1, pp. 35–44, 2007. View at Publisher · View at Google Scholar
  49. E. M. Sampayo, L. Franceschinis, O. Hoegh-Guldberg, and S. Dove, “Niche partitioning of closely related symbiotic dinoflagellates,” Molecular Ecology, vol. 16, no. 17, pp. 3721–3733, 2007. View at Publisher · View at Google Scholar
  50. M. Stat, W. K. W. Loh, O. Hoegh-Guldberg, and D. A. Carter, “Symbiont acquisition strategy drives host-symbiont associations in the southern Great Barrier Reef,” Coral Reefs, vol. 27, no. 4, pp. 763–772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Abrego, M. J. H. Van Oppen, and B. L. Willis, “Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny,” Molecular Ecology, vol. 18, no. 16, pp. 3532–3543, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. P. G. Mostafavi, S. M. R. Fatemi, M. H. Shahhosseiny, O. Hoegh-Guldberg, and W. K. W. Loh, “Predominance of clade D Symbiodinium in shallow-water reef-building corals off Kish and Larak Islands (Persian Gulf, Iran),” Marine Biology, vol. 153, no. 1, pp. 25–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Downing, “Coral reef communities in an extreme enviornment: the northwest Arabian Gulf,” in Proceedings of the 5th International Coral Reef Congress, C. Gabrie, B. Salvat, C. Lacroix, and J. Toffart, Eds., vol. 6, pp. 343–348, Antenne Museum-EPHE, Moorea, Tahiti, French Polynesia, 1985.
  54. S. L. Coles and Y. H. Fadlallah, “Reef coral survival and mortality at low temperatures in the Arabian Gulf: new species-specific lower temperature limits,” Coral Reefs, vol. 9, no. 4, pp. 231–237, 1991. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Garren, S. M. Walsh, A. Caccone, and N. Knowlton, “Patterns of association between Symbiodinium and members of the Montastraea annularis species complex on spatial scales ranging from within colonies to between geographic regions,” Coral Reefs, vol. 25, no. 4, pp. 503–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. T. C. LaJeunesse, R. T. Smith, J. Finney, and H. Oxenford, “Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral “bleaching” event,” Proceedings of the Royal Society B, vol. 276, no. 1676, pp. 4139–4148, 2009. View at Publisher · View at Google Scholar
  57. R. Buddemeier and D. Fautin, “Coral bleaching as an adaptive mechanism,” Bioscience, vol. 43, pp. 320–325, 1993. View at Google Scholar
  58. D. J. Thornhill, W. K. Fitt, and G. W. Schmidt, “Highly stable symbioses among western Atlantic brooding corals,” Coral Reefs, vol. 25, no. 4, pp. 515–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. D. J. Thornhill, T. C. LaJeunesse, D. W. Kemp, W. K. Fitt, and G. W. Schmidt, “Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion,” Marine Biology, vol. 148, no. 4, pp. 711–722, 2006. View at Publisher · View at Google Scholar
  60. E. M. Sampayo, T. Ridgeway, P. Bongaerts, and O. Hoegh-Guldberg, “Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, pp. 10444–10449, 2008. View at Google Scholar
  61. M. Stat, W. K. W. Loh, T. C. LaJeunesse, O. Hoegh-Guldberg, and D. A. Carter, “Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef,” Coral Reefs, vol. 28, no. 3, pp. 709–713, 2009. View at Publisher · View at Google Scholar
  62. A. F. Little, M. J. H. Van Oppen, and B. L. Willis, “Flexibility in algal endosymbioses shapes growth in reef corals,” Science, vol. 304, no. 5676, pp. 1492–1494, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Jones and R. Berkelmans, “Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types,” PloS One, vol. 5, no. 5, article e10437, 2010. View at Publisher · View at Google Scholar
  64. D. Tchernov, M. Y. Gorbunov, C. De Vargas et al., “Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 37, pp. 13531–13535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. J. C. Mieog, M. J. H. Van Oppen, N. E. Cantin, W. T. Stam, and J. L. Olsen, “Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling,” Coral Reefs, vol. 26, no. 3, pp. 449–457, 2007. View at Publisher · View at Google Scholar
  66. A. M. S. Correa, M. D. McDonald, and A. C. Baker, “Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals,” Marine Biology, vol. 156, no. 11, pp. 2403–2411, 2009. View at Publisher · View at Google Scholar · View at Scopus