Table of Contents
Journal of Medical Engineering
Volume 2013, Article ID 161090, 9 pages
http://dx.doi.org/10.1155/2013/161090
Research Article

Spectroscopic Detection of Caries Lesions

1Faculty of Technology, University of Vaasa, P.O. Box 700, 65101 Vaasa, Finland
2Dental Services of the City of Vaasa, Social and Health Administration, P.O. Box 241, 65101 Vaasa, Finland

Received 30 August 2012; Accepted 6 November 2012

Academic Editor: Hengyong Yu

Copyright © 2013 Mika Ruohonen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Wilson and A. Plasschaert, “Dental caries, minimally invasive dentistry and evidencebased clinical practice,” in Minimally Invasive Dentistry-the Management of Caries, N. H. F. Wilson, Ed., pp. 1–6, Quintessence, 2007. View at Google Scholar
  2. R. S. Jones, G. D. Huynh, G. C. Jones, and D. Fried, “Near-infrared transillumination at 1310-nm for the imaging of early dental decay,” Optics Express, vol. 11, no. 18, pp. 2259–2265, 2003. View at Google Scholar · View at Scopus
  3. L. Karlsson, “Caries detection methods based on changes in optical properties between healthy and carious tissue,” International Journal of Dentistry, vol. 2010, Article ID 270729, 9 pages, 2010. View at Publisher · View at Google Scholar
  4. C. M. Bühler, P. Ngaotheppitak, and D. Fried, “Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm,” Optics Express, vol. 13, no. 2, pp. 573–582, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. R. S. Jones, Near-Infrared Optical Imaging of Early Dental Caries, University of California, San Francisco, Calif, USA, 2006.
  6. J. Wu and D. Fried, “High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at λ = 1310-nm,” Lasers in Surgery and Medicine, vol. 41, no. 3, pp. 208–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Staninec, C. Lee, C. L. Darling, and D. Fried, “In vivo near-IR imaging of approximal dental decay at 1,310 nm,” Lasers in Surgery and Medicine, vol. 42, no. 4, pp. 292–298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Fried, J. D. B. Featherstone, C. L. Darling, R. S. Jones, P. Ngaotheppitak, and C. M. Bühler, “Early caries imaging and monitoring with near-infrared light,” Dental Clinics of North America, vol. 49, no. 4, pp. 771–793, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. I. A. Pretty, “Caries detection and diagnosis: novel technologies,” Journal of Dentistry, vol. 34, no. 10, pp. 727–739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” Journal of Biomedical Optics, vol. 14, no. 6, Article ID 064047, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. A. Maia, D. D. D. Fonseca, B. B. C. Kyotoku, and A. S. L. Gomes, “Evaluation of sensibility and specificity of NIR transillumination for early enamel caries detection—An in vitro study,” in Proceedings of the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (EQEC '09), p. 1, IEEE, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Karlsson, Optical Based Technologies for Detection of Dental Caries, Karolinska Institutet, 2009.
  13. W. A. Pena, Optical Imaging of Early Dental Caries in Deciduous Teeth With Near-IR Light at 1310 nm, University of California, San Francisco, Calif, USA, 2009.
  14. C. Lee, D. Lee, C. L. Darling, and D. Fried, “Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm,” Journal of Biomedical Optics, vol. 15, no. 4, Article ID 047011, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Chung, D. Fried, M. Staninec, and C. L. Darling, “Near infrared imaging of teeth at wavelengths between 1200 and 1600 nm,” in Lasers in Dentistry XVII, vol. 7884 of Proceedings of SPIE, San Francisco, Calif, USA, January 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Weatherell, C. Robinson, and A. S. Hallsworth, “Variations in the chemical composition of human enamel,” Journal of Dental Research, vol. 53, no. 2, pp. 180–192, 1974. View at Google Scholar · View at Scopus
  17. M. Marquezan, F. N. P. Corrêa, M. E. Sanabe et al., “Artificial methods of dentine caries induction: a hardness and morphological comparative study,” Archives of Oral Biology, vol. 54, no. 12, pp. 1111–1117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Aoba, “Solubility properties of human tooth mineral and pathogenesis of dental caries,” Oral Diseases, vol. 10, no. 5, pp. 249–257, 2004. View at Publisher · View at Google Scholar · View at Scopus