Table of Contents
Journal of Medical Engineering
Volume 2013 (2013), Article ID 418068, 11 pages
http://dx.doi.org/10.1155/2013/418068
Research Article

An Adaptive Control Method for Ros-Drill Cellular Microinjector with Low-Resolution Encoder

Department of Mechanical Engineering, ALARM Lab, University of Connecticut, Storrs, CT 06269, USA

Received 14 August 2012; Revised 7 January 2013; Accepted 28 January 2013

Academic Editor: Thomas Boland

Copyright © 2013 Zhenyu Zhang and Nejat Olgac. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Kawase, T. Iwata, O. Ueda et al., “Effect of partial incision of the zona pellucida by piezo-micromanipulator for in vitro fertilization using frozen-thawed mouse spermatozoa on the developmental rate of embryos transferred at the 2-cell stage,” Biology of Reproduction, vol. 66, no. 2, pp. 381–385, 2002. View at Google Scholar · View at Scopus
  2. K. Ediz and N. Olgac, “Microdynamics of the piezo-driven pipettes in ICSI,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 7, pp. 1262–1268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Ediz and N. Olgac, “Effect of mercury column on the microdynamics of the piezo-driven pipettes,” Journal of Biomechanical Engineering, vol. 127, no. 3, pp. 531–535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. F. Ergenc and N. Olgac, “New technology for cellular piercing: rotationally oscillating μ-injector, description and validation tests,” Biomedical Microdevices, vol. 9, no. 6, pp. 885–891, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. F. Ergenc, M. W. Li, M. Toner, J. D. Biggers, K. C. K. Lloyd, and N. Olgac, “Rotationally oscillating drill (Ros-Drill) for mouse ICSI without using mercury,” Molecular Reproduction and Development, vol. 75, no. 12, pp. 1744–1751, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Schellekens, N. Rosielle, H. Vermeulen, M. Vermeulen, S. Wetzels, and W. Pril, “Design for precision: current status and trends,” CIRP Annals, vol. 47, no. 2, pp. 557–586, 1998. View at Google Scholar · View at Scopus
  7. X.-D. Lu and D. L. Trumper, “Ultrafast tool servos for diamond turning,” CIRP Annals, vol. 54, no. 1, pp. 383–388, 2005. View at Google Scholar · View at Scopus
  8. K. J. Astrom, PID Controllers: Theory, Design, and Tuning, ISA, 2nd edition, 2002.
  9. H.-W. Kim and S.-K. Sul, “A new motor speed estimator using kalman filter in low-speed range,” IEEE Transactions on Industrial Electronics, vol. 43, no. 4, pp. 498–504, 1996. View at Google Scholar · View at Scopus
  10. S.-J Kwon, W. K. Chung, and Y. Youm, “A combined observer for robust state estimation and kalman filtering,” in Proceedings of the American Control Conference, pp. 2459–2464, Denver, Colorado, June 2003. View at Scopus
  11. R. Bautista-Quintero and M. J. Pont, “Implementation of H-infinity control algorithms for sensor-constrained mechatronic systems using low-cost microcontrollers,” IEEE Transactions on Industrial Informatics, vol. 4, no. 3, pp. 175–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Zhang and N. Olgac, “Adaptive hybrid control for rotationally oscillating drill (Ros-Drill), using a low-resolution sensor,” in Proceedings of the ASME Dynamic and System Control, pp. 564–569, 2011. View at Publisher · View at Google Scholar