Table of Contents
Journal of Medical Engineering
Volume 2013, Article ID 581617, 13 pages
http://dx.doi.org/10.1155/2013/581617
Research Article

A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT

Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA

Received 18 November 2012; Accepted 21 January 2013

Academic Editor: Eugene Fourkal

Copyright © 2013 Cristian T. Badea et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Badea, S. Johnston, B. Johnson, M. Lin, L. Hedlund, and G. A. Johnson, “A dual micro-CT system for small animal imaging,” in Proceedings of SPIE, vol. 6913, article 691342, San Diego, Calif, USA, 2008.
  2. M. Dierick, B. Masschaele, and L. Van Hoorebeke, “Octopus, a fast and user-friendly tomographic reconstruction package developed in LabView,” Measurement Science and Technology, vol. 15, no. 7, pp. 1366–1370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Dielenberg, P. Halasz, K. Hosaka, and D. van Helden, “Vessel motion measurement in real-time using movement detection at multiple regions of interest,” Journal of Neuroscience Methods, vol. 152, no. 1-2, pp. 40–47, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Kroon, “An overall X-ray system simulation model developed for system design and image quality versus patient dose optimization,” in Proceedings of the Medical Imaging 2003: Physics of Medical Imaging, Pts 1 and 2, vol. 5030, pp. 445–458, February 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. N. Ionita, K. R. Hoffmann, D. R. Bednarek, R. Chityala, and S. Rudin, “Cone-beam micro-CT system based on LabVIEW software,” Journal of Digital Imaging, vol. 21, no. 3, pp. 296–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Wang, P. Zhu, Q. Yuan et al., “Design and construction of an X-ray phase contrast CT system at BSRF,” Radiation Physics and Chemistry, vol. 75, no. 11, pp. 1986–1989, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Stojadinovic, D. A. Low, A. J. Hope et al., “MicroRT-small animal conformal irradiator,” Medical Physics, vol. 34, no. 12, pp. 4706–4716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Badea, L. W. Hedlund, and G. A. Johnson, “Micro-CT with respiratory and cardiac gating,” Medical Physics, vol. 31, no. 12, pp. 3324–3329, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Guo, S. Johnston, G. A. Johnson, and C. Badea, “A comparison of sampling strategies for dual energy micro-CT,” in Proceedings of SPIE, vol. 8313, San Diego, Calif, USA, 2012.
  10. L. W. Hedlund and T. L. Gluckman, “Basics of Small Animal Handling for In Vivo Imaging,” in Molecular Imaging in Oncology, M. Pomper and J. Gelovani, Eds., pp. 377–390, Informa Healthcare, 2008. View at Google Scholar
  11. L. W. Hedlund and G. A. Johnson, “Mechanical ventilation for imaging the small animal lung,” ILAR Journal, vol. 43, no. 3, pp. 159–174, 2002. View at Google Scholar · View at Scopus
  12. L. W. Hedlund, G. P. Cofer, S. J. Owen, and G. Allan Johnson, “MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging,” Magnetic Resonance Imaging, vol. 18, no. 6, pp. 753–759, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. D. Lin, L. Ning, C. T. Badea, N. N. Mistry, Y. Qi, and G. A. Johnson, “A high-precision contrast injector for small animal X-ray digital subtraction angiography,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 3, pp. 1082–1091, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Mukundan, K. B. Ghaghada, C. T. Badea et al., “A liposomal nanoscale contrast agent for preclinical CT in mice,” The American Journal of Roentgenology, vol. 186, no. 2, pp. 300–307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Lin, C. T. Marshall, Y. Qi et al., “Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography,” Medical Physics, vol. 36, no. 11, pp. 5347–5358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. D. Lin, Y. Qi, A. F. Chen, C. T. Badea, and G. A. Johnson, “Phenylephrine-modulated cardiopulmonary blood flow measured with use of X-ray digital subtraction angiography,” Journal of Pharmacological and Toxicological Methods, vol. 64, no. 2, pp. 180–186, 2011. View at Google Scholar
  17. C. T. Badea, L. W. Hedlund, Y. Qi, B. Berridge, and G. A. Johnson, “In vivo imaging of rat coronary arteries using bi-plane digital subtraction angiography,” Journal of Pharmacological and Toxicological Methods, vol. 64, no. 2, pp. 151–157, 2011. View at Google Scholar
  18. K. A. Miles, D. A. C. Leggett, and G. A. J. Bennett, “CT derived Patlak images of the human kidney,” British Journal of Radiology, vol. 72, no. 854, pp. 153–158, 1999. View at Google Scholar · View at Scopus
  19. R. E. Pollard, T. C. Garcia, S. M. Stieger, K. W. Ferrara, A. R. Sadlowski, and E. R. Wisner, “Quantitative evaluation of perfusion and permeability of peripheral tumors using contrast-enhanced computed tomography,” Investigative Radiology, vol. 39, no. 6, pp. 340–349, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. C. S. Patlak, R. G. Blasberg, and J. D. Fenstermacher, “Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data,” Journal of Cerebral Blood Flow and Metabolism, vol. 3, no. 1, pp. 1–7, 1983. View at Google Scholar · View at Scopus
  21. C. T. Badea, B. Fubara, L. W. Hedlund, and G. A. Johnson, “4-D micro-CT of the mouse heart,” Molecular Imaging, vol. 4, no. 2, pp. 110–116, 2005. View at Google Scholar · View at Scopus
  22. I. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” Journal of the Optical Society of America A, vol. 1, no. 6, pp. 612–619, 1984. View at Google Scholar · View at Scopus
  23. S. M. Johnston, G. A. Johnson, and C. T. Badea, “Temporal and spectral imaging with micro-CT,” Medical Physics, vol. 39, no. 8, pp. 4943–4958, 2012. View at Google Scholar
  24. C. T. Badea, S. M. Johnston, Y. Qi, and G. A. Johnson, “4D micro-CT for cardiac and perfusion applications with view under sampling,” Physics in Medicine and Biology, vol. 56, no. 11, pp. 3351–3369, 2011. View at Publisher · View at Google Scholar
  25. J. Song, Q. H. Liu, G. A. Johnson, and C. T. Badea, “Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT,” Medical Physics, vol. 34, no. 11, pp. 4476–4483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Guo, S. M. Johnston, Y. Qi, G. A. Johnson, and C. T. Badea, “4D micro-CT using fast prospective gating,” Physics in Medicine and Biology, vol. 57, no. 1, pp. 257–271, 2012. View at Google Scholar
  27. E. L. Jackson, K. P. Olive, D. A. Tuveson et al., “The differential effects of mutant p53 alleles on advanced murine lung cancer,” Cancer Research, vol. 65, no. 22, pp. 10280–10288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. C. T. Badea, A. W. Wetzel, N. Mistry, S. Pomerantz, D. Nave, and G. A. Johnson, “Left ventricle volume measurements in cardiac micro-CT: the impact of radiation dose and contrast agent,” Computerized Medical Imaging and Graphics, vol. 32, no. 3, pp. 239–250, 2008. View at Publisher · View at Google Scholar · View at Scopus