Table of Contents
Journal of Medical Engineering
Volume 2013, Article ID 852613, 11 pages
http://dx.doi.org/10.1155/2013/852613
Research Article

Snakes with Coordinate Regeneration Technique: An Application to Retinal Disc Boundary Detection

1Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650, Pakistan
2Isotope Application Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad 45650, Pakistan

Received 31 May 2013; Accepted 5 September 2013

Academic Editor: Hengyong Yu

Copyright © 2013 Asloob Ahmad Mudassar and Saira Butt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Mendels, C. Heneghan, and J. Thiran, “Identification of optic disc boundary in retinal images using active contours,” in Proceedings of Irish Machine Vision and Image Processing Conference (IMVIP '99), pp. 103–115, 1999.
  3. J. L. Prince and C. Xu, “A new external force model for snakes,” in Proceedings of the Image and Multidimensional Signal Processing Workshop, pp. 30–31, 1996.
  4. D. Terzopoulos and K. Fleischer, “Deformable models,” The Visual Computer, vol. 4, no. 6, pp. 306–331, 1988. View at Publisher · View at Google Scholar · View at Scopus
  5. T. McInerney and D. Terzopoulos, “A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis,” Computerized Medical Imaging and Graphics, vol. 19, no. 1, pp. 69–83, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Leymarie and M. D. Levine, “Tracking deformable objects in the plane using an active contour model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 6, pp. 617–634, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Ďurikovič, K. Kaneda, and H. Yamashita, “Dynamic contour: a texture approach and contour operations,” The Visual Computer, vol. 11, no. 6, pp. 277–289, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Terzopoulos and R. Szeliski, “Tracking with kalman snakes,” in Active Vision, Artificial Intelligence, A. Blake and A. Yuille, Eds., pp. 3–20, The MIT Press, Cambridge, Mass, USA, 1992. View at Google Scholar
  9. V. Caselles, F. Catte, T. Coll, and F. Dibbos, “A geometric model for active contours,” Numerische Mathematik, vol. 66, no. 1, pp. 1–31, 1993. View at Publisher · View at Google Scholar
  10. R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158–175, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” in Proceedings of the 5th International Conference on Computer Vision (ICCV '95), pp. 694–699, June 1995. View at Scopus
  12. L. D. Cohen, “On active contour models and balloons,” Graphical Models and Image Processing, vol. 53, no. 2, pp. 211–218, 1991. View at Google Scholar · View at Scopus
  13. L. D. Cohen and I. Cohen, “Finite-element methods for active contour models and balloons for 2-D and 3-D images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 11, pp. 1131–1147, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. A. J. Abrantes and J. S. Marques, “A class of constrained clustering algorithms for object boundary extraction,” IEEE Transactions on Image Processing, vol. 5, no. 11, pp. 1507–1521, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. C. A. Davatzikos and J. L. Prince, “Active contour model for mapping the cortex,” IEEE Transactions on Medical Imaging, vol. 14, no. 1, pp. 65–80, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 359–369, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. W. F. Ames, Numerical Methods for Partial Differential Equations, Computer Science and Scientific Computing, Academic Press, New York, NY, USA, 3rd edition, 1992.