Table of Contents
Journal of Medical Engineering
Volume 2013 (2013), Article ID 989712, 12 pages
http://dx.doi.org/10.1155/2013/989712
Research Article

Application of Principal Component Analysis in Automatic Localization of Optic Disc and Fovea in Retinal Images

1Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
2Isotope Application Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad 45650, Pakistan

Received 12 November 2012; Revised 26 April 2013; Accepted 2 May 2013

Academic Editor: Nicusor Iftimia

Copyright © 2013 Asloob Ahmad Mudassar and Saira Butt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Sinthanayothin, J. F. Boyce, H. L. Cook, and T. H. Williamson, “Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images,” British Journal of Ophthalmology, vol. 83, no. 8, pp. 902–910, 1999. View at Google Scholar · View at Scopus
  2. H. Li and O. Chutatape, “Automatic location of optic disk in retinal images,” in Proceedings of the International Conference on Image Processing, vol. 2, pp. 837–840, 2001.
  3. H. Li and O. Chutatape, “Automated feature extraction in color retinal images by a model based approach,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 2, pp. 246–254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Li and O. Chutatape, “Boundary detection of optic disk by a modified ASM method,” Pattern Recognition, vol. 36, no. 9, pp. 2093–2104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Li and O. Chutatape, “A model-based approach for automated feature extraction in fundus images,” in Proceedings of the 9th IEEE International Conference on Computer Vision, vol. 1, pp. 394–399, October 2003. View at Scopus
  6. N. Patton, T. M. Aslam, T. MacGillivray et al., “Retinal image analysis: concepts, applications and potential,” Progress in Retinal and Eye Research, vol. 25, no. 1, pp. 99–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Li and O. Chutatape, “Automatic detection and boundary estimation of the optic disk in retinal images using a model-based approach,” Journal of Electronic Imaging, vol. 12, no. 1, pp. 97–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Niemeijer, M. D. Abràmoff, and B. van Ginneken, “Fast detection of the optic disc and fovea in color fundus photographs,” Medical Image Analysis, vol. 13, no. 6, pp. 859–870, 2009. View at Google Scholar
  9. J. Gutiérrez, I. Epifanio, E. de Ves, and F. J. Ferri, “An active contour model for the automatic detection of the fovea in fluorescein angiographies,” in Proceedings of the 15th International Conference on Pattern Recognition (ICPR '00), vol. 4, 2000.
  10. S. Sekhar, W. Al-Nuaimy, and A. K. Nandi, “Automated localisation of optic disk and fovea in retinal fundus images,” in Proceedings of the 16th European Signal Processing Conference (EUSIPCO '08), Lausanne, Switzerland, August 2008.
  11. F. Zana, I. Meunier, and J. C. Klein, “A region merging algorithm using mathematical morphology: application to macula detection,” in Proceedings of the 4th International Symposium on Mathematical Morphology and Its Applications to Image and Signal Processing (ISMM '98), pp. 423–430, Norwell, Mass, USA, 1998.
  12. M. V. Ibañez and A. Simó, “Bayesian detection of the fovea in eye fundus angiographies,” Pattern Recognition Letters, vol. 20, no. 2, pp. 229–240, 1999. View at Google Scholar · View at Scopus
  13. O. Chutatape, “Fundus foveal localization based on vessel model,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 4440–4444, 2006. View at Google Scholar · View at Scopus
  14. K. Estabridis and R. J. P. de Figueiredo, “Automatic detection and diagnosis of diabetic retinopathy,” in Proceedings of the 14th IEEE International Conference on Image Processing (ICIP '07), pp. II445–II448, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Estabridis and R. Defigueiredo, “Fovea and vessel detection via multi-resolution parameter transform,” in Medical Imaging, Proceedings of SPIE, February 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Pinz, S. Bernögger, P. Datlinger, and A. Kruger, “Mapping the human retina,” IEEE Transactions on Medical Imaging, vol. 17, no. 4, pp. 606–619, 1998. View at Google Scholar · View at Scopus
  17. S. Butt and A. A. Mudasar, “Extraction of blood vessels in retinal images using line cross-section of image data,” in Proceedings of The International Bhurban Conference on Applied Sciences and Technology, Islamabad, Pakistan, January 2010.