Table of Contents
Journal of Mining
Volume 2013, Article ID 698031, 5 pages
http://dx.doi.org/10.1155/2013/698031
Research Article

Nickel and Zinc Removal from Acid Mine Drainage: Roles of Sludge Surface Area and Neutralising Agents

1Solid Energy New Zealand Ltd, Private Bag 1303, Christchurch 8024, New Zealand
2Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8140, New Zealand
3Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
4Great Lakes Institute for Environmental Science, University of Windsor, ON, Canada N9B 3P4

Received 28 June 2013; Accepted 26 September 2013

Academic Editor: Yong Sik Ok

Copyright © 2013 William E. Olds et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Pope, N. Newman, D. Craw, D. Trumm, and R. Rait, “Factors that influence coal mine drainage chemistry West Coast, South Island, New Zealand,” New Zealand Journal of Geology and Geophysics, vol. 53, no. 2-3, pp. 115–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D. B. Johnson and K. B. Hallberg, “Acid mine drainage remediation options: a review,” Science of the Total Environment, vol. 338, no. 1-2, pp. 3–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Trumm, “Selection of active and passive treatment systems for AMD—flow charts for New Zealand conditions,” New Zealand Journal of Geology and Geophysics, vol. 53, no. 2-3, pp. 195–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Morel, Principles of Aquatic Chemistry, John Wiley & Sons, 1983.
  5. M. Kelly, Mining and the Freshwater Environment, Elsevier Applied Science, Durham, UK, 1988.
  6. P. L. Younger, S. A. Banwart, and R. S. Hedin, Mine Water: Hydrology, Pollution, Remediation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.
  7. H. S. Greig, D. K. Niyogi, K. L. Hogsden, P. G. Jellyman, and J. S. Harding, “Heavy metals: confounding factors in the response of New Zealand freshwater fish assemblages to natural and anthropogenic acidity,” Science of the Total Environment, vol. 408, no. 16, pp. 3240–3250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Lee, J. M. Bigham, and G. Faure, “Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee,” Applied Geochemistry, vol. 17, no. 5, pp. 569–581, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. B. G. Lottermoser, Mine Wastes: Characterization, Treatment and Environmental Impacts, Springer, Cairns, Australia, 2003.
  10. H. Davies, P. Weber, P. Lindsay, D. Craw, B. Peake, and J. Pope, “Geochemical changes during neutralisation of acid mine drainage in a dynamic mountain stream, New Zealand,” Applied Geochemistry, vol. 26, no. 12, pp. 2121–2133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Cui, M. Jang, S.-H. Cho, J. Khim, and F. S. Cannon, “A continuous pilot-scale system using coal-mine drainage sludge to treat acid mine drainage contaminated with high concentrations of Pb, Zn, and other heavy metals,” Journal of Hazardous Materials, vol. 215-216, pp. 122–128, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. M. F. Schultz, M. M. Benjamin, and J. F. Ferguson, “Adsorption and desorption of metals on ferrihydrite: reversibility of the reaction and sorption properties of the regenerated solid,” Environmental Science and Technology, vol. 21, no. 9, pp. 863–869, 1987. View at Google Scholar · View at Scopus
  13. J. G. Webster, P. J. Swedlund, and K. S. Webster, “Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate,” Environmental Science and Technology, vol. 32, no. 10, pp. 1361–1368, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Xu, L. Axe, T. Boonfueng, T. A. Tyson, P. Trivedi, and K. Pandya, “Ni(II) complexation to amorphous hydrous ferric oxide: an X-ray absorption spectroscopy study,” Journal of Colloid and Interface Science, vol. 314, no. 1, pp. 10–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. L. Sjöberg and D. T. Rickard, “Calcite dissolution kinetics: surface speciation and the origin of the variable pH dependence,” Chemical Geology, vol. 42, no. 1–4, pp. 119–136, 1984. View at Google Scholar · View at Scopus
  16. M. Alkattan, E. H. Oelkers, J.-L. Dandurand, and J. Schott, “An experimental study of calcite and limestone dissolution rates as a function of pH from -1 to 3 and temperature from 25 to 80°C,” Chemical Geology, vol. 151, no. 1–4, pp. 199–214, 1998. View at Google Scholar · View at Scopus
  17. American Public Health Association (APHA), Standard Methods for the Examination of Water & Wastewater, Washington, DC, USA, 2005.
  18. C. A. McCauley, A. D. O'Sullivan, P. A. Weber, and D. Trumm, “Variability of stockton coal mine drainage chemistry and its treatment potential with biogeochemical reactors,” New Zealand Journal of Geology and Geophysics, vol. 53, no. 2-3, pp. 211–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. W. E. Olds, D. C. W. Tsang, and P. Weber, “Acid mine drainage treatment assisted by lignite-derived humic substances,” Water, Air, & Soil Pollution, vol. 224, pp. 1521–1533, 2013. View at Google Scholar
  20. P. R. Adler and P. L. Sibrell, “Sequestration of phosphorus by acid mine drainage floc,” Journal of Environmental Quality, vol. 32, no. 3, pp. 1122–1129, 2003. View at Google Scholar · View at Scopus
  21. R. J. Crawford, I. H. Harding, and D. E. Mainwaring, “Adsorption and coprecipitation of single heavy metal ions onto the hydrated oxides of iron and chromium,” Langmuir, vol. 9, no. 11, pp. 3050–3056, 1993. View at Google Scholar · View at Scopus
  22. J. G. Webster, “Chemical processes affecting trace metal transport in the Waihou River and estuary, New Zealand,” New Zealand Journal of Marine and Freshwater Research, vol. 29, no. 4, pp. 539–553, 1995. View at Google Scholar · View at Scopus
  23. V. L. Snoeyink and D. Jenkins, Water Chemistry, John Wiley & Sons, 1980.