Table of Contents
Journal of Mycology
Volume 2013 (2013), Article ID 262130, 7 pages
http://dx.doi.org/10.1155/2013/262130
Research Article

Integration between Compost, Trichoderma harzianum and Essential Oils for Controlling Peanut Crown Rot under Field Conditions

Plant Pathology Department, National Research Centre, El-Behoos Street, Dokki, Giza 12662, Egypt

Received 20 April 2013; Revised 4 July 2013; Accepted 22 July 2013

Academic Editor: Maria João Sousa

Copyright © 2013 Mokhtar M. Abdel-Kader et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Suzui and T. Makino, “Occurrence of Aspergillus crown rot of peanut caused by Aspergillus niger van Tieghem,” Annals of the Phytopathological Society of Japan, vol. 46, pp. 46–48, 1980. View at Google Scholar
  2. M. A. Nofal, H. I. Seif-El-Nasr, M. M. Diab, M. A. A. El-Nagar, and S. I. A. El-Said, “Effect of the systemic fungicides benlate and vitavax-captan on Aspergillus crown rot incidence of peanut plants,” Annals of Agricultural Science, vol. 35, pp. 407–415, 1990. View at Google Scholar
  3. Anonymous, Yearbook of Statistics of Ministry of Agriculture, Agricultural Economical and Statistical Department, Cairo, Egypt, 2010, (Arabic).
  4. A. Ciegler and R. F. Vesonder, “Microbial food and feed toxicants: fungal toxins,” in The CRC Handbook of Microbiology, vol. 8, p. 19126, CRC Press, Boca Raton, Fla, USA, 1987. View at Google Scholar
  5. D. F. Farr, G. F. Bills, G. P. Chamuris, and A. Y. Rossman, Fungi on Plants and Plant Products in the United States, APS Press, St. Paul, Minn, USA, 1989.
  6. D. L. Hawksworth, “Problems and prospects for improving the stability of names in Aspergillus and Penicillium,” in Modern Concepts in Penicillium and Aspergillus Classification, R. A. Samson and J. I. Pitt, Eds., vol. 185 of NATO Advanced Science Institute Series, Series A: Life Sciences, Plenum Press, New York, NY, USA, 1990. View at Google Scholar
  7. H. Damicone and H. Melouk, Soilborne Diseases of Peanut, EPP-7664, Oklahoma Cooperative Extension Service, 1990, http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-2617/EPP-7664web.pdf.
  8. A. Sivan and I. Chet, “Microbial control of plant disease,” in Environmental Microbiology, R. Mitchell, Ed., pp. 335–354, Wiley, New York, NY, USA, 1992. View at Google Scholar
  9. E. Sharon, M. Bar-Eyal, I. Chet, A. Herrera-Estrella, O. Kleifeld, and Y. Spiegel, “Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum,” Phytopathology, vol. 91, no. 7, pp. 687–693, 2001. View at Google Scholar · View at Scopus
  10. S. Rose, M. Parker, and Z. K. Punja, “Efficacy of biological and chemical treatments for control of Fusarium root and tem rot on greenhouse cucumber,” Plant Disease, vol. 87, no. 12, pp. 1462–1470, 2003. View at Google Scholar · View at Scopus
  11. M. Shoresh, I. Yedidia, and I. Chet, “Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203,” Phytopathology, vol. 95, no. 1, pp. 76–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. E. Horst, J. Locke, C. R. Krause, R. W. McMahon, L. V. Madden, and H. A. J. Hoitink, “Suppression of Botrytis blight of begonia by Trichoderma hamatum 382 in peat and compost-amended potting mixes,” Plant Disease, vol. 89, no. 11, pp. 1195–1200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. A. J. Hoitink, L. V. Madden, and A. E. Dorrance, “Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality,” Phytopathology, vol. 96, no. 2, pp. 186–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. D. Lumsden, J. A. Lewis, and P. D. Millner, “Effect of composted sewage sludge on several soilborne pathogens and diseases,” Phytopathology, vol. 73, no. 11, pp. 1543–1548, 1983. View at Google Scholar · View at Scopus
  15. H. A. J. Hoitink and M. J. Boehm, “Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon,” Annual Review of Phytopathology, vol. 37, pp. 427–446, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. H. A. J. Hoitink and P. C. Fahy, “Basis for the control of soilborne plant pathogens with composts,” Annual Review of Phytopathology, vol. 24, pp. 93–114, 1986. View at Google Scholar
  17. L. Cotxarrera, M. I. Trillas-Gay, C. Steinberg, and C. Alabouvette, “Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato,” Soil Biology and Biochemistry, vol. 34, no. 4, pp. 467–476, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Borrero, M. I. Trillas, J. Ordovás, J. C. Tello, and M. Avilés, “Predictive factors for the suppression of fusarium wilt of tomato in plant growth media,” Phytopathology, vol. 94, no. 10, pp. 1094–1101, 2004. View at Google Scholar · View at Scopus
  19. M. I. Trillas, E. Casanova, L. Cotxarrera, J. Ordovás, C. Borrero, and M. Avilés, “Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings,” Biological Control, vol. 39, no. 1, pp. 32–38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. H. S. Ferreira, F. N. Matthee, and A. C. Thomas, “Biological control of Eutypa lata on Grapevine by an antagonistic strain of Bacillus subtilis,” Phytopathology, vol. 81, pp. 283–287, 1991. View at Google Scholar
  21. M. M. Abdel-Kader, “Field application of Trichoderma harzia¬num as biocide for control of bean root rot disease,” Egyptian Journal of Phytopathology, vol. 25, pp. 19–25, 1997. View at Google Scholar
  22. SAS, Statistical Analysis System. User's Guide: Statistics (PC-Dos 6.04), SAS Institute, Cary, NC, USA, 1988.
  23. J. Neler, W. Wassermann, and M. H. Kutner, Applied Linear Statistical Models. Regression, Analysis of Variance and Experimental Design, Richard D. Irwin, Homewood, Ill, USA, 2nd edition, 1985.
  24. S. A. H. Naqvi, M. S. Y. Khan, and S. B. Vohora, “Anti-bacterial, anti-fungal and anthelmintic investigations on Indian medicinal plants,” Fitoterapia, vol. 62, no. 3, pp. 221–228, 1991. View at Google Scholar · View at Scopus
  25. G. G. F. Nascimento, J. Locatelli, P. C. Freitas, and G. L. Silva, “Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria,” Brazilian Journal of Microbiology, vol. 31, no. 4, pp. 247–256, 2000. View at Google Scholar · View at Scopus
  26. G. J. E. Nychas, “Natural antimicrobial from plants,” in New Methods of Food Preservation, G. W. Gould, Ed., pp. 235–258, CRC Press, Londres, UK, 1996. View at Google Scholar
  27. A. Alefyah and M. H. Avice, “The fungicidal properties of plant extracts and essential oils,” in Plant Pathology: Global Perspectives of an Applied Science, BSPP Presidential Meeting, 1997. View at Google Scholar
  28. J. Del Campo, C. Nguyen-The, M. Sergent, and M. J. Amiot, “Determination of the most bioactive phenolic compounds from rosemary against Listeria monocytogenes: influence of concentration, pH, and NaCl,” Journal of Food Science, vol. 68, no. 6, pp. 2066–2071, 2003. View at Google Scholar · View at Scopus
  29. J. Kim, M. R. Marshall, and C. I. Wei, “Antibacterial activity of some essential oil components against five foodborne pathogens,” Journal of Agricultural and Food Chemistry, vol. 43, no. 11, pp. 2839–2845, 1995. View at Google Scholar · View at Scopus
  30. N. S. El-Mougy and M. M. Abdel-Kader, “Long-term activity of bio-priming seed treatment for biological control of faba bean root rot pathogens,” Australasian Plant Pathology, vol. 37, no. 5, pp. 464–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. N. S. El-Mougy, M. M. Abdel-Kader, S. M. Lashin, and M. D. A. Aly, “Evaluating survival and antagonistic activity of introduced bio-agents to the soil under greenhouse conditions,” Journal of Applied Sciences Research, vol. 8, no. 4, pp. 2401–2411, 2012. View at Google Scholar
  32. W. J. Janisiewicz, J. Usall, and B. Bors, “Nutritional enhancement of biocontrol of blue mold on apples,” Phytopathology, vol. 82, pp. 1364–1370, 1992. View at Google Scholar
  33. W. J. Janisiewicz, W. S. Conway, D. M. Glenn, and C. E. Sams, “Integrating biological control and calcium treatment for controlling postharvest decay of apples,” HortScience, vol. 33, no. 1, pp. 105–109, 1998. View at Google Scholar · View at Scopus
  34. A. L. Siddaramaiah, K. S. K. Prasad, and R. K. Hedge, “Effectiveness of seed dressiong chemicals against crown rot of groundnut,” Pesticides, vol. 13, pp. 28–29, 1979. View at Google Scholar
  35. M. A. A. El-Nagar, S. I. A. El-Said, M. M. Diab, and F. M. Maklad, “Effect of using some fungicides and seed inoculation with Rhizobium lupini on controlling crown rot disease incidence and plant growth of peanut crop,” African Journal of Agricultural Sciences, vol. 17, pp. 199–207, 1990. View at Google Scholar
  36. P. Warrior, K. Kondru, V. Preeti, and P. Vasudevan, “Formulation of biocontrol agents for pest and disease management,” in Biological Control of Crop Disease, S. S. Gnanamanickam, Ed., Marcel Dekker, New York, NY, USA, 2002. View at Google Scholar
  37. U. Conrath, C. M. J. Pieterse, and B. Mauch-Mani, “Priming in plant-pathogen interactions,” Trends in Plant Science, vol. 7, no. 5, pp. 210–216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Wisniewski, C. Wilson, A. El-Ghaouth, and S. Droby, “Nonchemical approaches to postharvest disease control,” Acta Horticulturae, vol. 553, pp. 407–412, 2001. View at Google Scholar
  39. W. J. Janisiewicz and L. Korsten, “Biological control of postharvest diseases of fruits,” Annual Review of Phytopathology, vol. 40, pp. 411–441, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Droby, M. Wisniewski, A. El-Ghaouth, and C. Wilson, “Biological control of postharvest diseases of fruit and vegetables: current achievements and future challenges,” Acta Horticulturae, vol. 628, pp. 703–713, 2003. View at Google Scholar
  41. S. Droby, “Improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials,” Acta Horticulturae, vol. 709, pp. 45–51, 2006. View at Google Scholar · View at Scopus
  42. H. A. J. Hoitink, A. F. Schmitthener, and L. J. Herr, “Composted bark for control of root rot in ornamentals,” Ohio Reporter, vol. 60, pp. 25–26, 1975. View at Google Scholar
  43. A. K. Singh, A. Dikshit, M. L. Sharma, and S. N. Dixit, “Fungitoxic activity of some essential oils,” Economic Botany, vol. 34, no. 2, pp. 186–190, 1980. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Akgul and M. Kivanc, “Inhibitory effects of selected Turkish spices and oregano components on some foodborne fungi,” International Journal of Food Microbiology, vol. 6, no. 3, pp. 259–261, 1988. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Kumar and S. C. Tripathi, “Evaluation of the leaf juice of some higher plants for their toxicity against soil borne pathogens,” Plant and Soil, vol. 132, no. 2, pp. 297–301, 1991. View at Publisher · View at Google Scholar · View at Scopus
  46. U. P. Singh, V. B. Chauhan, K. G. Wagner, and A. Kumas, “Effect of ajoene, a compound derived from garlic (Allium sativum), on Phytophthora drechsleri f. sp. Cajani,” Mycologia, vol. 84, pp. 105–108, 1992. View at Google Scholar
  47. B. J. Juven, J. Kanner, F. Schved, and H. Weisslowicz, “Factors that interact with the antibacterial action of thyme essential oil and its active constituents,” Journal of Applied Bacteriology, vol. 76, no. 6, pp. 626–631, 1994. View at Google Scholar · View at Scopus
  48. R. Lanciotti, A. Gianotti, F. Patrignani, N. Belletti, M. E. Guerzoni, and F. Gardini, “Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits,” Trends in Food Science and Technology, vol. 15, no. 3-4, pp. 201–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Mitra and B. Nandi, “Biodegraded agro industrial wastes as soil amendments for plant growth,” Journal of Mycopathology Research, vol. 32, pp. 101–109, 1994. View at Google Scholar
  50. M. Alexander, “Ecology of soil micro-organisms,” in Microbial Ecology, M. Alexander, Ed., pp. 207–223, John Wiley and Sons, New York, NY, USA, 1971. View at Google Scholar