Table of Contents
Journal of Mycology
Volume 2013 (2013), Article ID 536721, 11 pages
http://dx.doi.org/10.1155/2013/536721
Research Article

Optimization of C/N Ratio and Inducers for Wastewater Paper Industry Treatment Using Trametes versicolor Immobilized in Bubble Column Reactor

1Grupo de Biotecnología Ambiental e Industrial, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, Colombia
2Departamento de Biotecnología y Bioingeniería del Centro de Investigaciones y Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Avenida Politécnico Nacional 2508, 0736 México, DF, Mexico

Received 30 August 2013; Accepted 6 November 2013

Academic Editor: Ángel Domínguez

Copyright © 2013 Aura M. Pedroza-Rodríguez and Refugio Rodríguez-Vázquez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

C/N ratio and MnSO4 and CuSO4 concentrations were optimized for decolorization and chemical oxygen demand (COD) removal of bleached Kraft pulp mill effluent by Trametes versicolor immobilized in polyurethane foam. Statistical differences () at high C/N ratios (169), 2 mM CuSO4, and 0.071 mM MnSO4 were determined. Decolorization of 60.5%, COD removal of 55%, laccase (LAC) 60 U/L, and manganese peroxidase (MnP) 8.4 U/L were obtained. Maximum of decolorization (82%), COD removal (83%), LAC (443.5 U/L), and MnP (18 U/L) activities at C/N ratio of 405 (6.75 mM CuSO4 and 0.22 mM MnSO4) was achieved in step 7 at 4 d. Positive correlation between the decolorization, COD removal, and enzymatic activity was found (). T. versicolor bioremediation capacity was evaluated in bubble column reactor during 8 d. Effluent was adjusted according to optimized parameters and treated at 25°C and air flow of 800 mL/min. Heterotrophic bacteria growth was not inhibited by fungus. After 4 d, 82% of COD reduction and 80% decolorization were recorded. Additionally, enzymatic activity of LAC (345 U/L) and MnP (78 U/L) was observed. The COD reduction and decolorization correlated positively () with enzymatic activity. Chlorophenol removal was 98% of pentachlorophenol (PCP), 92% of 2,4,5-trichlorophenol (2,4,5-TCP), 90% of 3,4-dichlorophenol (3,4-DCP), and 99% of 4-chlorophenols (4CP).