Table of Contents
Journal of Mycology
Volume 2013 (2013), Article ID 781914, 10 pages
http://dx.doi.org/10.1155/2013/781914
Research Article

DNA Based Identification and Phylogenetic Characterisation of Endophytic and Saprobic Fungi from Antidesma madagascariense, a Medicinal Plant in Mauritius

1Departmental of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
2College of Forestry, Henan University of Science and Technology, Luoyang 471003, China
3Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
4Department of Plant Protection, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310029, China

Received 28 February 2013; Accepted 3 May 2013

Academic Editor: Praveen Rao Juvvadi

Copyright © 2013 Rajesh Jeewon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Aly, A. Debbab, J. Kjer, and P. Proksch, “Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products,” Fungal Diversity, vol. 41, pp. 1–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Promputtha, S. Lumyong, V. Dhanasekaran, E. H. C. McKenzie, K. D. Hyde, and R. Jeewon, “A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence,” Microbial Ecology, vol. 53, no. 4, pp. 579–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. T. S. Suryanarayanan, N. Thirunavukkarasu, M. Govindarajulu, and V. Gopalan, “Fungal endophytes: an untapped source of biocatalysts,” Fungal Diversity, vol. 54, pp. 19–30, 2012. View at Google Scholar
  4. S. B. Toofanee and R. Dulymamode, “Fungal endophytes associated with Cordemoya integrifolia,” Fungal Diversity, vol. 11, pp. 169–175, 2002. View at Google Scholar · View at Scopus
  5. F. B. Narod, A. Gurib-Fakim, and A. H. Subratty, “Biological investigations into Antidesma madagascariense Lam. (Euphorbiaceae), Faujasiopsis flexuosa (Lam.) C. Jeffrey (Asteraceae), Toddalia asiatica (L.) Lam. and Vepris lanceolata (Lam.) G. Don (Rutaceae),” Journal of Cell and Molecular Biology, vol. 3, pp. 15–21, 2004. View at Google Scholar
  6. F. M. Mahomoodally, A. H. Subratty, A. Gurib-Fakim, and M. I. Choudhary, “Antioxidant, antiglycation and cytotoxicity evaluation of selected medicinal plants of the Mascarene Islands,” BMC Complement Alternative Medicine, vol. 12, article 165, 2012. View at Google Scholar
  7. I. Promputtha, R. Jeewon, S. Lumyong, E. H. C. McKenzie, and K. D. Hyde, “Ribosomal DNA fingerprinting in the identification of non sporulating endophytes from Magnolia liliifera (Magnoliaceae),” Fungal Diversity, vol. 20, pp. 167–186, 2005. View at Google Scholar · View at Scopus
  8. R. Jeewon, E. C. Y. Liew, and K. D. Hyde, “Phylogenetic evaluation of species nomenclature of Pestalotiopsis in relation to host association,” Fungal Diversity, vol. 17, pp. 39–55, 2004. View at Google Scholar · View at Scopus
  9. T. J. White, T. D. Bruns, S. Lee, and J. W. Taylor, “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR ProTocols: A Guide To Methods and Applications, M. A. Innis, D. H. Gelfand, J. S. Sninsky, and T. J. White, Eds., pp. 315–322, Academic Press, New York, NY, USA, 1990. View at Google Scholar
  10. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. T. A. Hall, “BioEdit: a user-friendly biological sequence alignment, and analysis program for Windows 95/98/NT,” Nucleic Acids Symposium Series, vol. 41, pp. 95–98, 1999. View at Google Scholar
  12. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar
  13. D. L. Swofford, “PAUP*. Phylogenetis Analysis Using Parsimony (*and Other Methods), version 4.0b10,” Sinauer Associates, Sunderland, Mass, USA, 2002.
  14. R. Jeewon, S. Y. Q. Yeung, and K. D. Hyde, “A novel phylogenetic group within Thozetella (Chaetosphaeriaceae): a new taxon based on morphology and DNA sequence analyses,” Canadian Journal of Microbiology, vol. 55, no. 6, pp. 680–687, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Naeimi, S. A. Khodaparast, M. Javan-Nikkhah, C. Vágvölgyi, and L. Kredics, “Species patterns and phylogenetic relationships of Trichoderma strains in rice fields of Southern Caspian Sea, Iran,” Cereal Research Communications, vol. 39, pp. 560–568, 2011. View at Google Scholar
  16. S. Thongkantha, S. Lumyong, E. H. C. McKenzie, and K. D. Hyde, “Fungal saprobes and pathogens occurring on tissues of Dracaena lourieri and Pandanus spp. in Thailand,” Fungal Diversity, vol. 30, pp. 149–169, 2008. View at Google Scholar · View at Scopus
  17. G. E. Harman, C. R. Howell, A. Viterbo, I. Chet, and M. Lorito, “Trichoderma species—opportunistic, avirulent plant symbionts,” Nature Reviews Microbiology, vol. 2, no. 1, pp. 43–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. B. A. Bailey, M. D. Strem, and D. Wood, “Trichoderma species form endophytic associations within Theobroma cacao trichomes,” Mycological Research, vol. 113, no. 12, pp. 1365–1376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. U'Ren, J. W. Dalling, R. E. Gallery et al., “Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples,” Mycological Research, vol. 113, no. 4, pp. 432–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Chaverri, L. A. Castlebury, B. E. Overton, and G. J. Samuels, “Hypocrea/Trichoderma: species with conidiophore elongations and green conidia,” Mycologia, vol. 95, no. 6, pp. 1100–1140, 2003. View at Google Scholar · View at Scopus
  21. J. P. Breen, “Acremonium endophyte interactions with enhanced plant resistance to insects,” Annual Review of Entomology, vol. 39, pp. 401–423, 1994. View at Google Scholar · View at Scopus
  22. A. E. Glenn, C. W. Bacon, R. Price, and R. T. Hanlin, “Molecular phylogeny of Acremonium and its taxonomic implications,” Mycologia, vol. 88, no. 3, pp. 369–383, 1996. View at Google Scholar · View at Scopus
  23. M. Prabakaran, S. Merinal, and A. Panneerselvam, “Investigation of phylloplane mycoflora from some medicinal plants,” European Journal of Experimental Biology, vol. 1, no. 2, pp. 219–225, 2011. View at Google Scholar
  24. G. Perrone, G. Stea, F. Epifani, J. Varga, J. C. Frisvad, and R. A. Samson, “Aspergillus niger contains the cryptic phylogenetic species A. awamori,” Fungal Biology, vol. 115, no. 11, pp. 1138–1150, 2011. View at Google Scholar
  25. F. E. Vega, F. Posada, S. W. Peterson, T. J. Gianfagna, and F. Chaves, “Penicillium species endophytic in coffee plants and ochratoxin A production,” Mycologia, vol. 98, no. 1, pp. 31–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Houbraken, J. C. Frisvad, and R. A. Samson, “Taxonomy of Penicillium section Citrina,” Studies in Mycology, vol. 70, no. 1, pp. 153–138, 2011. View at Google Scholar
  27. L. Chen, W. Liu, X. Hu, K. Huang, J. L. Wu, and Q. Q. Zhang, “Citrinin derivatives from the marine-derived fungus Penicillium citrinum,” Chemical and Pharmaceutical Bulletin, vol. 59, no. 4, pp. 515–517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Posada, M. C. Aime, S. W. Peterson, S. A. Rehner, and F. E. Vega, “Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales),” Mycological Research, vol. 111, no. 6, pp. 748–757, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Garibaldi, P. Martini, L. Repetto et al., “First report of Fusarium oxysporum causing wilt on Iceland poppy Papaver nudicaule in Italy,” Plant Disease, vol. 96, article 1823, no. 12, 2012. View at Google Scholar
  30. J. G. Wei, T. Xu, L. D. Guo, A. R. Liu, Y. Zhang, and X. H. Pan, “Endophytic Pestalotiopsis species associated with plants of Podocarpaceae, Theaceae and Taxaceae in southern China,” Fungal Diversity, vol. 24, pp. 55–74, 2007. View at Google Scholar · View at Scopus
  31. R. Gazis and P. Chaverri, “Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru,” Fungal Ecology, vol. 3, no. 3, pp. 240–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Jeewon, E. C. Y. Liew, and K. D. Hyde, “Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters,” Molecular Phylogenetics and Evolution, vol. 25, no. 3, pp. 378–392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Jeewon, E. C. Y. Liew, J. A. Simpson, I. J. Hodgkiss, and K. D. Hyde, “Phylogenetic significance of morphological characters in the taxonomy of Pestalotiopsis species,” Molecular Phylogenetics and Evolution, vol. 27, no. 3, pp. 372–383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Jeewon, E. C. Y. Liew, and K. D. Hyde, “Molecular systematics of the Amphisphaeriaceae based on cladistic analyses of partial LSU rDNA gene sequences,” Mycological Research, vol. 107, no. 12, pp. 1392–1402, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. T. R. Nag Rag, Coelomycetous Anamorphs with Appendage Bearing Conidia, Mycologue Publications, Waterloo, Ontaria, Canada, 1993.
  36. W. Y. Huang, Y. Z. Cai, S. Surveswaran, K. D. Hyde, H. Corke, and M. Sun, “Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species,” Fungal Diversity, vol. 36, pp. 69–88, 2009. View at Google Scholar
  37. N. F. Wulandari, C. To-anun, K. D. Hyde et al., “Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia,” Fungal Diversity, vol. 34, pp. 23–39, 2009. View at Google Scholar · View at Scopus
  38. C. Glienke, O. L. Pereira, D. Stringari et al., “Endophytic and pathogenic Phyllosticta species, with reference to those associated with Citrus Black Spot,” Persoonia, vol. 26, pp. 47–56, 2011. View at Google Scholar
  39. A. K. Pandey, M. S. Reddy, and T. S. Suryanarayanan, “ITS-RFLP and ITS sequence analysis of a foliar endophytic Phyllosticta from different tropical trees,” Mycological Research, vol. 107, no. 4, pp. 439–444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. P. W. Crous, B. Slippers, M. J. Wingfield et al., “Phylogenetic lineages in the Botryosphaeriaceae,” Studies in Mycology, vol. 55, pp. 235–253, 2006. View at Google Scholar · View at Scopus
  41. J. Santamaría and P. Bayman, “Fungal epiphytes and endophytes of coffee leaves (Coffea arabica),” Microbial Ecology, vol. 50, no. 1, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. M. T. Hoffman and A. E. Arnold, “Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees,” Mycological Research, vol. 112, no. 3, pp. 331–344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Spagnolo, G. Marchi, F. Peduto, A. J. L. Phillips, and G. Surico, “Detection of Botryosphaeriaceae species within grapevine woody tissues by nested PCR, with particular emphasis on the Neofusicoccum parvum/N. ribis complex,” European Journal of Plant Pathology, vol. 129, no. 3, pp. 485–500, 2011. View at Publisher · View at Google Scholar · View at Scopus