Table of Contents
Journal of Mycology
Volume 2014, Article ID 582672, 14 pages
http://dx.doi.org/10.1155/2014/582672
Research Article

Genetic Diversity of Fusarium oxysporum f. sp. dianthi in Southern Spain

1Department of Agroforestry Sciences, Escuela Técnica Superior de Ingenieríaa Agronómica (ETSIA), University of Seville, Carretera de Utrera Km 1, 41013 Seville, Spain
2Department of Plant Protection, University of Sassari, Via Enrico de Nicola 9, 07100 Sassari, Italy

Received 18 February 2014; Accepted 20 May 2014; Published 6 July 2014

Academic Editor: Praveen Rao Juvvadi

Copyright © 2014 Raúl Castaño et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bogale, B. D. Wingfield, M. J. Wingfield, and E. T. Steenkamp, “Species-specific primers for Fusarium redolens and a PCR-RFLP technique to distinguish among three clades of Fusarium oxysporum,” FEMS Microbiology Letters, vol. 271, no. 1, pp. 27–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Aloi and R. P. Baayen, “Examination of the relationships between vegetative compatibility groups and races in Fusarium oxysporum f. sp. dianthi,” Plant Pathology, vol. 42, no. 6, pp. 839–850, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. R. P. Baayen, F. van Dreven, M. C. Krijger, and C. Waalwijk, “Genetic diversity in Fusarium oxysporum f. sp. dianthi and Fusarium redolens f. sp. dianthi,” European Journal of Plant Pathology, vol. 103, no. 5, pp. 395–408, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Migheli, E. Briatore, and A. Garibaldi, “Use of random amplified polymorphic DNA (RAPD) to identify races 1, 2, 4 and 8 of Fusarium oxysporum f. sp. dianthi in Italy,” European Journal of Plant Pathology, vol. 104, no. 1, pp. 49–57, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Prados-Ligero, M. J. Basallote-Ureba, C. J. López-Herrera, and J. M. Melero-Vara, “Evaluation of susceptibility of carnation cultivars to Fusarium Wilt and determination of Fusarium oxysporum f. sp. dianthi races in Southwest Spain,” HortScience, vol. 42, no. 3, pp. 596–599, 2007. View at Google Scholar · View at Scopus
  6. Anonymous, Anuario de Estadística Agroalimentaria. Cap. 20:20.7.2.3, Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid, Spain, 2008.
  7. J. A. Navas Becerra, Apuntes sobre el cultivo del clavel. Consejería de Agricultura y Pesc, Junta de Andalucía, Sevilla, Spain, 1988.
  8. A. García Ruiz, M. de Cara, M. Santos, and J. C. Tello, “Fusarium wilt of carnation in northwestern coast of Cádiz (Spain),” Boletín de Sanidad Vegetal, vol. 35, pp. 317–328, 2009. View at Google Scholar
  9. J. L. Andrés, M. J. Vicente, J. L. Cenis et al., “Genetic and pathogenic variation of Fusarium oxysporum f. sp. dianthi in Spain,” Boletín de Sanidad Vegetal. Plagas, vol. 27, pp. 249–257, 2001. View at Google Scholar
  10. A. Chiocchetti, I. Bernardo, M. Daboussi et al., “Detection of Fusarium oxysporum f. sp. dianthi in Carnation tissue by PCR amplification of transposon insertions,” Phytopathology, vol. 89, no. 12, pp. 1169–1175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Manulis, N. Kogan, M. Reuven, and Y. Ben-Yephet, “Use of the RAPD technique for identification of Fusarium oxysporum f. sp. dianthi from carnation,” Phytopathology, vol. 84, no. 1, pp. 98–101, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. K. O'Donnell, H. C. Kistlerr, E. Cigelnik, and R. C. Ploetz, “Multiple evolutionary origins of the fungus causing panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2044–2049, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. Elliott, E. A. Des Jardin, K. O'Donnell, D. M. Geiser, N. A. Harrison, and T. K. Broschat, “Fusarium oxysporum f. sp. palmarum, a novel forma specialis causing a lethal disease of syagrus romanzoffiana and Washingtonia robusta in Florida,” Plant Disease, vol. 94, no. 1, pp. 31–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Fernández-Ortuño, E. Loza-Reyes, S. L. Atkins, and B. A. Fraaije, “The CYP51C gene, a reliable marker to resolve interspecific phylogenetic relationships within the Fusarium species complex and a novel target for species-specific PCR,” International Journal of Food Microbiology, vol. 144, no. 2, pp. 301–309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. M. Geiser, M. D. M. Jiménez-Gasco, S. Kang et al., “FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium,” European Journal of Plant Pathology, vol. 110, no. 5-6, pp. 473–479, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Shafagh, M. F. Rastegar, and B. Jafarpour, “Physiological race and genetic diversity determination of Fusarium oxysporum f. sp. melonis by differential hosts and molecular marker RAPD in Northern and Razavi Khorasan provinces,” Research Journal of Biological Sciences, vol. 3, pp. 790–793, 2008. View at Google Scholar
  17. F. M. Alves-Santos, L. Cordeiro-Rodrigues, J. M. Sayagués et al., “Pathogenicity and race characterization of Fusarium oxysporum f. sp. phaseoli isolates from Spain and Greece,” Plant Pathology, vol. 51, no. 5, pp. 605–611, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Garibaldi and M. L. Gullino, “Fusarium wilt of carnation: present situation, problems and perspectives,” Acta Horticulturae, vol. 216, pp. 45–54, 1987. View at Google Scholar
  19. O. D. Dhingra and J. B. Sinclair, Basic Plant Pathology Methods, Lewis, Boca Raton, Fla, USA, 2nd edition, 1995.
  20. L. L. Singleton, J. D. Mihail, and C. M. Rush, Methods for Research on Soil-Borne Phytopathogenic Fungi, American Phytopathological Society Press, St Paul, Minn, USA, 1992.
  21. A. Cassago, R. A. Panepucci, A. M. T. Baião, and F. Henrique-Silva, “Cellophane based mini-prep method for DNA extraction from the filamentous fungus Trichoderma reesei,” BMC Microbiology, vol. 2, article 1, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Carbonell, D. Cifuentes, J. Tello, and J. L. Ceñis, “Differentiation of Fusarium oxysporum f. sp. lycopersici and F.o. f. sp. radicis-lycopersici and its detection in plant by RAPD markers,” Boletín de Sanidad Vegetal Plagas, vol. 20, pp. 919–926, 1994. View at Google Scholar
  23. D. J. Vakalounakis and G. A. Fragkiadakis, “Genetic diversity of Fusarium oxysporum isolates from cucumber: differentiation by pathogenicity, vegetative compatibility, and RAPD fingerprinting,” Phytopathology, vol. 89, no. 2, pp. 161–168, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Q. Zhou and Y. N. Li, “The RAPD evidence for the phylogenetic relationship of the closely related species of cultivated apple,” Genetic Resources and Crop Evolution, vol. 47, no. 4, pp. 353–357, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Link, C. Dixkens, M. Singh, M. Schwall, and A. E. Melchinger, “Genetic diversity in European and Mediterranean faba bean germ plasm revealed by RAPD markers,” Theoretical and Applied Genetics, vol. 90, no. 1, pp. 27–32, 1995. View at Google Scholar · View at Scopus
  26. Y. Van De Peer and R. De Wachter, “Treecon for windows: a software package for the construction and drawing of evolutionary trees for the microsoft windows environment,” Bioinformatics, vol. 10, no. 5, pp. 569–570, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Kumar, J. Dudley, M. Nei, and K. Tamura, “MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences,” Briefings in Bioinformatics, vol. 9, no. 4, pp. 299–306, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Kimura, “A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences,” Journal of Molecular Evolution, vol. 16, no. 2, pp. 111–120, 1980. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Bianciotto, C. Bandi, D. Minerdi, M. Sironi, H. V. Tighy, and P. Bonfante, “An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria,” Applied and Environmental Microbiology, vol. 62, no. 8, pp. 3005–3010, 1996. View at Google Scholar · View at Scopus
  30. R. P. Baayen and C. H. van der Plas, “Localization ability, latent period and wilting rate in eleven carnation cultivars with partial resistance to Fusarium wilt,” Euphytica, vol. 59, no. 2-3, pp. 165–174, 1992. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Cebolla, C. Monton, P. Carrasco, and A. Rodríguez, La importancia de las razas I y II de Fusarium oxysporum fsp. dianthi en los suelos españoles, Jornadas sobre Patología Vegetal. Monografía INIA 48, Ministerio de Agricultura, Pesca y Alimentación (ed.), Madrid, Spain, 1983.
  32. G. Lori, V. Edel-Hermann, N. Gautheron, and C. Alabouvette, “Genetic diversity of pathogenic and nonpathogenic populations of Fusarium oxysporum isolated from carnation fields in Argentina,” Phytopathology, vol. 94, no. 6, pp. 661–668, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Lievens, M. Rep, and B. P. H. J. Thomma, “Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum,” Pest Management Science, vol. 64, no. 8, pp. 781–788, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Daboussi, J. Davière, S. Graziani, and T. Langin, “Evolution of the Fot1 transposons in the genus Fusarium: discontinuous distribution and epigenetic inactivation,” Molecular Biology and Evolution, vol. 19, no. 4, pp. 510–520, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Ben-Yephet and D. Shtienberg, “Effects of the host, the pathogen, the environment and their interactions, on fusarium wilt in carnation,” Phytoparasitica, vol. 25, no. 3, pp. 207–216, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Yergeau, M. Filion, V. Vujanovic, and M. St-Arnaud, “A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus,” Journal of Microbiological Methods, vol. 60, no. 2, pp. 143–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. S.-I. Kwon, C. D. Von Dohlen, and A. J. Anderson, “Gene sequence analysis of an opportunistic wheat pathogen, an isolate of Fusarium proliferatum,” Canadian Journal of Botany, vol. 79, no. 9, pp. 1115–1121, 2001. View at Publisher · View at Google Scholar · View at Scopus