Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2010, Article ID 157591, 13 pages
http://dx.doi.org/10.4061/2010/157591
Review Article

Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair

Discipline of Dermatology, Sydney Cancer Centre, Bosch Institute, University of Sydney at Royal Prince Alfred Hospital, Camperdown, Sydney, NSW 2006, Australia

Received 16 April 2010; Accepted 13 June 2010

Academic Editor: Ashis Basu

Copyright © 2010 Devita Surjana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Jacob and M. E. Swendseid, “Niacin,” in Present Knowledge in Nutrition, E. E. Ziegler and L. J. Filer, Eds., pp. 184–190, ILSI Press, Washington, DC, USA, 1996. View at Google Scholar
  2. C. A. Benavente, M. K. Jacobson, and E. L. Jacobson, “NAD in skin: therapeutic approaches for niacin,” Current Pharmaceutical Design, vol. 15, no. 1, pp. 29–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Karthikeyan and D. M. Thappa, “Pellagra and skin,” International Journal of Dermatology, vol. 41, no. 8, pp. 476–481, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. “Nutrient Reference Values for Australian and New Zealand, including recommended dietary intake,” pp.1–329, National Health and Medical Research Council publication, Canberra, Australia, 2006.
  5. T. M. Jackson, J. M. Rawling, B. D. Roebuck, and J. B. Kirkland, “Large supplements of nicotinic acid and nicotinamide increase tissue NAD+ and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats,” Journal of Nutrition, vol. 125, no. 6, pp. 1455–1461, 1995. View at Google Scholar · View at Scopus
  6. E. L. Jacobson, A. J. Dame, J. S. Pyrek, and M. K. Jacobson, “Evaluating the role of niacin in human carcinogenesis,” Biochimie, vol. 77, no. 5, pp. 394–398, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. Cosmetic Ingredient Review (CIR) Expert Panel, “Final report of the safety assessment of niacinamide and niacin,” International Journal of Toxicology, vol. 24, pp. 1–31, 2005. View at Google Scholar
  8. J. Denekamp and J. F. Fowler, “ARCON—current status: summary of a workshop on preclinical and clinical studies,” Acta Oncologica, vol. 36, no. 5, pp. 517–525, 1997. View at Google Scholar · View at Scopus
  9. S. L. Winter and J. L. Boyer, “Hepatic toxicity from large doses of vitamin-B3 (Nicotinamide),” New England Journal of Medicine, vol. 289, no. 22, pp. 1180–1182, 1973. View at Google Scholar · View at Scopus
  10. J. H. A. M. Kaanders, M. R. L. Stratford, J. Liefers et al., “Administration of nicotinamide during a five- to seven-week course of radiotherapy: pharmacokinetics, tolerance, and compliance,” Radiotherapy and Oncology, vol. 43, no. 1, pp. 67–73, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. R. E. Ranchoff and K. Tomecki, “Niacin or niacinamide? Nicotinic acid or nicotinamide? What is the difference?” Journal of the American Academy of Dermatology, vol. 15, no. 1, pp. 116–117, 1986. View at Google Scholar · View at Scopus
  12. M. L. Meyer-Ficca, R. G. Meyer, E. L. Jacobson, and M. K. Jacobson, “Poly(ADP-ribose) polymerases: managing genome stability,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 5, pp. 920–926, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. W. M. Hendricks, “Pellagra and pellagralike dermatoses: etiology, differential diagnosis, dermatopathology, and treatment,” Seminars in Dermatology, vol. 10, no. 4, pp. 282–292, 1991. View at Google Scholar · View at Scopus
  14. P. Chambon, J. D. Weill, and P. Mandel, “Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme,” Biochemical and Biophysical Research Communications, vol. 11, no. 1, pp. 39–43, 1963. View at Google Scholar · View at Scopus
  15. F. J. Oliver, J. Menissier-de Murcia, and G. De Murcia, “Poly(ADP-Ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease,” American Journal of Human Genetics, vol. 64, no. 5, pp. 1282–1288, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. J. P. Kamat and T. P. A. Devasagayam, “Methylene blue plus light-induced lipid peroxidation in rat liver microsomes: inhibition by nicotinamide (vitamin B3) and other antioxidants,” Chemico-Biological Interactions, vol. 99, no. 1–3, pp. 1–16, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Yamada, K. Nonaka, T. Hanafusa, A. Miyazaki, H. Toyoshima, and S. Tarui, “Preventative and therapeutic effects of large-dose nicotinamide injections on diabetes associated with insulitis-an observation in non-obese diabetic (NOD) mice,” Diabetes, vol. 31, no. 9, pp. 749–753, 1982. View at Google Scholar
  18. D. M. Abdallah, “Nicotinamide alleviates indomethacin-induced gastric ulcers: a novel antiulcer agent,” European Journal of Pharmacology, vol. 627, no. 1–3, pp. 276–280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. M. Vincent, M. J. Stevens, C. Backus, L. L. Mclean, and E. L. Feldman, “Cell culture modeling to test therapies against hyperglycemia-mediated oxidative stress and injury,” Antioxidants and Redox Signaling, vol. 7, no. 11-12, pp. 1494–1506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. G. L. Wilson, N. J. Patton, and J. M. McCord, “Mechanisms of streptozotocin- and alloxan-induced damage in the rat B-cells,” Diabetologia, vol. 27, no. 6, pp. 587–591, 1984. View at Google Scholar · View at Scopus
  21. C. Q. Vu, D. L. Coyle, H. H. Tai, E. L. Jacobson, and M. K. Jacobson, “Intramolecular ADP-ribose transfer reactions and calcium signalling,” in ADP-Ribosylation in Animal Tissue: Structure, Function, and Biology of Mono-ADP-Ribosyltransferases and Related Enzymes, F. Haag and F. Koch-Nolte, Eds., pp. 381–388, Plenum Press, New York, NY, USA, 1997. View at Google Scholar
  22. C. O. Vu, D. L. Coyle, E. L. Jacobson, and M. K. Jacobson, “Intracellular signaling by cylic ADP-Ribose in oxidative cell injury,” FASEB Journal, vol. 11, no. 9, p. 1522, 1997. View at Google Scholar · View at Scopus
  23. E. L. Jacobson, W. M. Shieh, and A. C. Huang, “Mapping the role of NAD metabolism in prevention and treatment of carcinogenesis,” Molecular and Cellular Biochemistry, vol. 193, no. 1-2, pp. 69–74, 1999. View at Google Scholar · View at Scopus
  24. W. J. Blot, J.-Y. Li, P. R. Taylor et al., “Nutrition intervention trials in Linxian, China. Supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population,” Journal of the National Cancer Institute, vol. 85, no. 18, pp. 1483–1492, 1993. View at Google Scholar · View at Scopus
  25. S. Franceschi, E. Bidoli, A. E. Baron, and C. La Vecchia, “Maize and risk of cancers of the oral cavity, pharynx, and esophagus in Northeastern Italy,” Journal of the National Cancer Institute, vol. 82, no. 17, pp. 1407–1411, 1990. View at Google Scholar · View at Scopus
  26. E. Negri, S. Franceschi, C. Bosetti et al., “Selected micronutrients and oral and pharyngeal cancer,” International Journal of Cancer, vol. 86, no. 1, pp. 122–127, 2000. View at Google Scholar · View at Scopus
  27. F. Siassi, Z. Pouransari, and P. Ghadirian, “Nutrient intake and esophageal cancer in the caspian littoral of Iran: a case-control study,” Cancer Detection and Prevention, vol. 24, no. 3, pp. 295–303, 2000. View at Google Scholar · View at Scopus
  28. G. C. Kabat, A. B. Miller, M. Jain, and T. E. Rohan, “Dietary intake of selected B vitamins in relation to risk of major cancers in women,” British Journal of Cancer, vol. 99, no. 5, pp. 816–821, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. B. Zablotska, Y. Chen, J. H. Graziano et al., “Protective effects of B vitamins and antioxidants on the risk of arsenic-related skin lesions in Bangladesh,” Environmental Health Perspectives, vol. 116, no. 8, pp. 1056–1062, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Pelucchi, I. Tramacere, P. Bertuccio, A. Tavani, E. Negri, and C. La Vecchia, “Dietary intake of selected micronutrients and gastric cancer risk: an Italian case-control study,” Annals of Oncology, vol. 20, no. 1, pp. 160–165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C.-X. Qu, F. Kamangar, J.-H. Fan et al., “Chemoprevention of primary liver cancer: a randomized, double-blind trial in Linxian, China,” Journal of the National Cancer Institute, vol. 99, no. 16, pp. 1240–1247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Bosetti, L. Scotti, L. Dal Maso et al., “Micronutrients and the risk of renal cell cancer: a case-control study from Italy,” International Journal of Cancer, vol. 120, no. 4, pp. 892–896, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. E. L. Jacobson, “Niacin deficiency and cancer in women,” Journal of the American College of Nutrition, vol. 12, no. 4, pp. 412–416, 1993. View at Google Scholar · View at Scopus
  34. R. I. Inculet, J. A. Norton, and G. E. Nichoalds, “Water-soluble vitamins in cancer patients on parenteral nutrition: a prospective study,” Journal of Parenteral and Enteral Nutrition, vol. 11, no. 3, pp. 243–249, 1987. View at Google Scholar
  35. S. Dreizen, K. B. McCredie, M. J. Keating, and B. S. Andersson, “Nutritional deficiencies in patients receiving cancer chemotherapy,” Postgraduate Medicine, vol. 87, no. 1, pp. 163–170, 1990. View at Google Scholar · View at Scopus
  36. H. P. Stevens, L. S. Ostlere, R. H. J. Begent, J. S. Dooley, and M. H. A. Rustin, “Pellagra secondary to 5-fluorouracil,” British Journal of Dermatology, vol. 128, no. 5, pp. 578–580, 1993. View at Publisher · View at Google Scholar · View at Scopus
  37. C. W. Op Het Veld, S. Van Hees-Stuivenberg, A. A. Van Zeeland, and J. G. Jansen, “Effect of nucleotide excision repair on hprt gene mutations in rodent cells exposed to DNA ethylating agents,” Mutagenesis, vol. 12, no. 6, pp. 417–424, 1997. View at Google Scholar · View at Scopus
  38. C. A. Felix, “Secondary leukemias induced by topoisomerase-targeted drugs,” Biochimica et Biophysica Acta, vol. 1400, no. 1–3, pp. 233–255, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. J. B. Kirkland, “Niacin and carcinogenesis,” Nutrition and Cancer, vol. 46, no. 2, pp. 110–118, 2003. View at Google Scholar · View at Scopus
  40. B. Toth, “Lack of carcinogenicity of nicotinamide and isonicotinamide following lifelong administration to mice,” Oncology, vol. 40, no. 1, pp. 72–75, 1983. View at Google Scholar · View at Scopus
  41. F. A. French, “The influence of nutritional factors on pulmonary adenomas in mice,” in Inorganic and Nutritional Aspects of Cancer, G. N. Schrauzer, Ed., Plenum Press, New York, NY, USA, 1978. View at Google Scholar
  42. H. Gotoh, T. Nomura, H. Nakajima, C. Hasegawa, and Y. Sakamoto, “Inhibiting effects of nicotinamide on urethane-induced malformations and tumors in mice,” Mutation Research, vol. 199, no. 1, pp. 55–63, 1988. View at Google Scholar · View at Scopus
  43. A.-P. Bartleman, R. Jacobs, and J. B. Kirkland, “Niacin supplementation decreases the incidence of alkylation-induced nonlymphocytic leukemia in long-evans rats,” Nutrition and Cancer, vol. 60, no. 2, pp. 251–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Gotoh, T. Nomura, and C. Hasegawa, “Growth-inhibition of transplanted murine-breast cancer by nicotinamide in C3H/HEJ mice,” Cancer Research Therapy and Control, vol. 3, no. 2, pp. 121–126, 1993. View at Google Scholar
  45. M. R. Horsman, A. A. Khalil, D. J. Chaplin, and J. Overgaard, “The ability of nicotinamide to inhibit the growth of a C3H mouse mammary carcinoma,” Acta Oncologica, vol. 34, no. 3, pp. 443–446, 1995. View at Google Scholar · View at Scopus
  46. R. Schoental, “The role of nicotinamide and of certain other modifying factors in diethylnitrosamine carcinogenesis: fusaria mycotoxins and spontaneous tumors in animals and man,” Cancer, vol. 40, no. 4, pp. 1833–1840, 1977. View at Google Scholar · View at Scopus
  47. M. R. Rosenberg, D. L. Novicki, and R. L. Jirtle, “Promoting effect of nicotinamide on the development of renal tubular cell tumors in rats initiated with diethylnitrosamine,” Cancer Research, vol. 45, no. 2, pp. 809–814, 1985. View at Google Scholar
  48. N. Rakieten, B. S. Gordon, A. Beaty, D. A. Cooney, R. D. Davis, and P. S. Schein, “Pancreatic islet cell tumors produced by the combined action of streptozotocin and nicotinamide,” Proceedings of the Society for Experimental Biology and Medicine, vol. 137, no. 1, pp. 280–283, 1971. View at Google Scholar · View at Scopus
  49. N. Rakieten, B. S. Gordon, and A. Beaty, “Modification of renal tumorigenic effect of streptozotocin by nicotinamide: spontaneous reversibility of streptozotocin diabetes,” Proceedings of the Society for Experimental Biology and Medicine, vol. 151, no. 2, pp. 356–361, 1976. View at Google Scholar
  50. R. Schoental, “Pancreatic islet cell and other tumors in rats given heliotrine, a monoester pyrrolizidine alkaloid, and nicotinamide,” Cancer Research, vol. 35, no. 8, pp. 2020–2024, 1975. View at Google Scholar
  51. V. Burkart, Z.-Q. Wang, J. Radons et al., “Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin,” Nature Medicine, vol. 5, no. 3, pp. 314–319, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. H. L. Gensler, “Prevention of photoimmunosuppression and photocarcinogenesis by topical nicotinamide,” Nutrition and Cancer, vol. 29, no. 2, pp. 157–162, 1997. View at Google Scholar · View at Scopus
  53. H. L. Gensler, T. Williams, A. C. Huang, and E. L. Jacobson, “Oral niacin prevents photocarcinogenesis and photoimmunosuppression in mice,” Nutrition and Cancer, vol. 34, no. 1, pp. 36–41, 1999. View at Google Scholar · View at Scopus
  54. A. Ludwig, M. Dietel, G. Schafer, K. Muller, and H. Hilz, “Nicotinamide and nicotinamide analogues as antitumor promoters in mouse skin,” Cancer Research, vol. 50, no. 8, pp. 2470–2475, 1990. View at Google Scholar · View at Scopus
  55. F. J. C. Roe, “Effect of massive doses of riboflavin, and other vitamins of the B group, on skin carcinogenesis in mice,” British Journal of Cancer, vol. 16, pp. 252–257, 1964. View at Google Scholar
  56. A. M. Pamukcu, U. Milli, and G. T. Bryan, “Protective effect of nicotinamide on bracken fern inducec carcinogenecity in rats,” Nutrition and Cancer, vol. 3, p. 86, 1981. View at Google Scholar
  57. P. M. Pour and T. Lawson, “Modification of pancreatic carcinogenesis in the hamster model. XV. Preventive effect of nicotinamide,” Journal of the National Cancer Institute, vol. 73, no. 3, pp. 767–770, 1984. View at Google Scholar · View at Scopus
  58. F. J. Moloney, H. Comber, P. O'Lorcain, P. O'Kelly, P. J. Conlon, and G. M. Murphy, “A population-based study of skin cancer incidence and prevalence in renal transplant recipients,” British Journal of Dermatology, vol. 154, no. 3, pp. 498–504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. G. M. Halliday and H. Honigsmann, “Sunscreens, photoimmunosuppression, and photoaging,” in Clinical Guide to Sunscreeens and Photoprotection, H. W. Lim and Z. D. Draelos, Eds., pp. 101–116, Informa Healthcare USA, Inc, New York, NY, USA, 2009. View at Google Scholar
  60. G. M. Halliday, R. Bestak, K. S. Yuen, L. L. Cavanagh, and R. S. C. Barnetson, “UVA-induced immunosuppression,” Mutation Research, vol. 422, no. 1, pp. 139–145, 1998. View at Publisher · View at Google Scholar · View at Scopus
  61. D. L. Damian, R. S. C. Barnetson, and G. M. Halliday, “Low-dose UVA and UVB have different time courses for suppression of contact hypersensitivity to a recall antigen in humans,” Journal of Investigative Dermatology, vol. 112, no. 6, pp. 939–944, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. L. A. Applegate, R. D. Ley, J. Alcalay, and M. L. Kripke, “Identification of the molecular target for the suppression of contact hypersensitivity by ultraviolet radiation,” Journal of Experimental Medicine, vol. 170, no. 4, pp. 1117–1131, 1989. View at Google Scholar · View at Scopus
  63. D. L. Damian, C. R. S. Patterson, M. Stapelberg, J. Park, R. S. C. Barnetson, and G. M. Halliday, “UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide,” Journal of Investigative Dermatology, vol. 128, no. 2, pp. 447–454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Yiasemides, G. Sivapirabu, G. M. Halliday, J. Park, and D. L. Damian, “Oral nicotinamide protects against ultraviolet radiation-induced immunosuppression in humans,” Carcinogenesis, vol. 30, no. 1, pp. 101–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. D. L. Damian and G. M. Halliday, “Measurement of ultraviolet radiation-induced suppression of recall contact and delayed-type hypersensitivity in humans,” Methods, vol. 28, no. 1, pp. 34–45, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Sivapirabu, E. Yiasemides, G. M. Halliday, J. Park, and D. L. Damian, “Topical nicotinamide modulates cellular energy metabolism and provides broad-spectrum protection against ultraviolet radiation-induced immunosuppression in humans,” British Journal of Dermatology, vol. 161, no. 6, pp. 1357–1364, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. G. De Murcia, V. Schreiber, M. Molinete et al., “Structure and function of poly(ADP-ribose) polymerase,” Molecular and Cellular Biochemistry, vol. 138, no. 1-2, pp. 15–24, 1994. View at Publisher · View at Google Scholar · View at Scopus
  68. G. De Murcia and J. Menissier-de Murcia, “Poly(ADP-ribose) polymerase: a molecular nick-sensor,” Trends in Biochemical Sciences, vol. 19, no. 4, pp. 172–176, 1994. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Shall and G. De Murcia, “Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model?” Mutation Research, vol. 460, no. 1, pp. 1–15, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Virág and C. Szabó, “The therapeutic potential of poly(ADP-ribose) polymerase inhibitors,” Pharmacological Reviews, vol. 54, no. 3, pp. 375–429, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. G. J. Hageman and R. H. Stierum, “Niacin, poly(ADP-ribose) polymerase-1 and genomic stability,” Mutation Research, vol. 475, no. 1-2, pp. 45–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Y. Kim, S. Mauro, N. Gévry, J. T. Lis, and W. L. Kraus, “NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1,” Cell, vol. 119, no. 6, pp. 803–814, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. S. D. Skaper, “Poly(ADP-ribose) polymerase-1 in acute neuronal death and inflammation—a strategy for neuroprotection,” in Neuroprotective Agents, W. Slikkerandr, J. Andrews, and B. Trembly, Eds., pp. 217–228, The New York Academy of Sciences, New York, NY, USA, 2003. View at Google Scholar
  74. R. H. Stierum, M. H. M. Van Herwijnen, G. J. Hageman, and J. C. S. Kleinjans, “Increased poly(ADP-ribose) polymerase activity during repair of (±)-anti-benzo[a]pyrene diolepoxide-induced DNA damage in human peripheral blood lymphocytes in vitro,” Carcinogenesis, vol. 15, no. 4, pp. 745–751, 1994. View at Google Scholar · View at Scopus
  75. C. Trucco, F. J. Oliver, G. De Murcia, and J. Menissier-de Murcia, “DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines,” Nucleic Acids Research, vol. 26, no. 11, pp. 2644–2649, 1998. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Molinete, W. Vermeulen, A. Burkle et al., “Overproduction of the poly(ADP-ribose)polymerase DNA-binding domain blocks alkylation-induced DNA-repair synthesis in mammalian-cells,” Embo Journal, vol. 12, no. 5, pp. 2109–2117, 1993. View at Google Scholar
  77. R. Ding and M. Smulson, “Depletion of nuclear poly(ADP-ribose)polymerase by antisense RNA expression-influences on genomic stability, chromatin organization and DNA-repair,” Faseb Journal, vol. 8, no. 7, p. A1409, 1994. View at Google Scholar · View at Scopus
  78. F. Dantzer, H. P. Nasheuer, J. L. Vonesch, G. de Murcia, and J. Menissier-de Murcia, “Functional association of poly(ADP-ribose) polymerase with DNA polymerase alpha-primase complex: a link between DNA strand break detection and DNA replication,” Nucleic Acids Research, vol. 26, no. 8, pp. 1891–1898, 1998. View at Google Scholar
  79. M. S. Satoh, G. G. Poirier, and T. Lindahl, “Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage,” Biochemistry, vol. 33, no. 23, pp. 7099–7106, 1994. View at Google Scholar · View at Scopus
  80. S. Chatterjee, S. J. Berger, and N. A. Berger, “Poly(ADP-ribose) polymerase: a guardian of the genome that facilitates DNA repair by protecting against DNA recombination,” Molecular and Cellular Biochemistry, vol. 193, no. 1-2, pp. 23–30, 1999. View at Google Scholar · View at Scopus
  81. C. Trucco, V. Rolli, F. J. Oliver et al., “A dual approach in the study of poly (ADP-ribose) polymerase: in vitro random mutagenesis and generation of deficient mice,” Molecular and Cellular Biochemistry, vol. 193, no. 1-2, pp. 53–60, 1999. View at Google Scholar · View at Scopus
  82. M. Masutani, T. Nozaki, K. Nakamoto et al., “The response of Parp knockout mice against DNA damaging agents,” Mutation Research, vol. 462, no. 2-3, pp. 159–166, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. Z.-Q. Wang, L. Stingl, C. Morrison et al., “PARP is important for genomic stability but dispensable in apoptosis,” Genes and Development, vol. 11, no. 18, pp. 2347–2358, 1997. View at Google Scholar · View at Scopus
  84. J. Menissier-de Murcia, C. Niedergang, C. Trucco et al., “Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 14, pp. 7303–7307, 1997. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Tsutsumi, M. Masutani, T. Nozaki et al., “Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout mice to nitrosamine carcinogenicity,” Carcinogenesis, vol. 22, no. 1, pp. 1–3, 2001. View at Google Scholar · View at Scopus
  86. F. D. Di Fagagna, M. P. Hande, W.-M. Tong, P. M. Lansdorp, Z.-Q. Wang, and S. P. Jackson, “Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability,” Nature Genetics, vol. 23, no. 1, pp. 76–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  87. M. A. Osley, T. Tsukuda, and J. A. Nickoloff, “ATP-dependent chromatin remodeling factors and DNA damage repair,” Mutation Research, vol. 618, no. 1-2, pp. 65–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. F. Li, Z. Z. Chong, and K. Maiese, “Cell life versus cell longevity: the mysteries surrounding the NAD+ precursor nicotinamide,” Current Medicinal Chemistry, vol. 13, no. 8, pp. 883–895, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. B. W. Durkacz, O. Omidiji, D. A. Gray, and S. Shall, “(ADP-ribose)n participates in DNA excision repair,” Nature, vol. 283, no. 5747, pp. 593–596, 1980. View at Google Scholar · View at Scopus
  90. E. L. Jacobson, P. U. Giacomoni, M. J. Roberts, G. T. Wondrak, and M. K. Jacobson, “Optimizing the energy status of skin cells during solar radiation,” Journal of Photochemistry and Photobiology B, vol. 63, no. 1–3, pp. 141–147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. C. A. Benavente and E. L. Jacobson, “Niacin restriction upregulates NADPH oxidase and reactive oxygen species (ROS) in human keratinocytes,” Free Radical Biology and Medicine, vol. 44, no. 4, pp. 527–537, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. A. B. Weitberg, “Effect of nicotinic acid supplementation in vivo on oxygen radical-induced genetic damage in human lymphocytes,” Mutation Research, vol. 216, no. 4, pp. 197–201, 1989. View at Google Scholar · View at Scopus
  93. N. A. Berger and G. W. Sikorski, “Nicotinamide stimulates repair of DNA damage in human lymphocytes,” Biochemical and Biophysical Research Communications, vol. 95, no. 1, pp. 67–72, 1980. View at Google Scholar · View at Scopus
  94. J. L. Sims, S. J. Berger, and N. A. Berger, “Effects of nicotinamide on NAD and poly(ADP-ribose) metabolism in DNA-damaged human lymphocytes,” Journal of Supramolecular and Cellular Biochemistry, vol. 16, no. 3, pp. 281–288, 1981. View at Google Scholar · View at Scopus
  95. E. Kjellen, G. G. Jonsson, R. W. Pero, and P.-I. Christensson, “Effects of hyperthermia and nicotinamide on DNA repair synthesis, ADP-ribosyl transferase activity, NAD+ and ATP pools, and cytotoxicity in γ-irradiated human mononuclear leukocytes,” International Journal of Radiation Biology, vol. 49, no. 1, pp. 151–162, 1986. View at Google Scholar · View at Scopus
  96. J. E. Cleaver and J. E. Trosko, “Defective stage of DNA repair in a human disease, xeroderma pigmentosum,” Radiation Research, vol. 39, no. 2, p. 471, 1969. View at Google Scholar
  97. M. Miwa, M. Kanai, T. Kondo, H. Hoshino, K. Ishihara, and T. Sugimura, “Inhibitors of poly(ADP-ribose)polymerase enhance unscheduled DNA-synthesis in human peripheral lymphocytes,” Biochemical and Biophysical Research Communications, vol. 100, no. 1, pp. 463–470, 1981. View at Google Scholar
  98. K. Tang, H. Sham, E. Hui, and J. B. Kirkland, “Niacin deficiency causes oxidative stress in rat bone marrow cells but not through decreased NADPH or glutathione status,” Journal of Nutritional Biochemistry, vol. 19, no. 11, pp. 746–753, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. V. O. Melnikova and H. N. Ananthaswamy, “Cellular and molecular events leading to the development of skin cancer,” Mutation Research, vol. 571, no. 1-2, pp. 91–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Svobodova, D. Walterova, and J. Vostalova, “Ultraviolet light induced alteration to the skin,” Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, vol. 150, no. 1, pp. 25–38, 2006. View at Google Scholar · View at Scopus
  101. G. M. Halliday, “Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis,” Mutation Research, vol. 571, no. 1-2, pp. 107–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. A. C. Boyonoski, J. C. Spronck, L. M. Gallacher et al., “Niacin deficiency decreases bone marrow poly(ADP-ribose) and the latency of ethylnitrosourea-induced carcinogenesis in rats,” Journal of Nutrition, vol. 132, no. 1, pp. 108–114, 2002. View at Google Scholar · View at Scopus
  103. J. C. Spronck and J. B. Kirkland, “Niacin deficiency increases spontaneous and etoposide-induced chromosomal instability in rat bone marrow cells in vivo,” Mutation Research, vol. 508, no. 1-2, pp. 83–97, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. J. C. Spronck, J. L. Nickerson, and J. B. Kirkland, “Niacin deficiency alters p53 expression and impairs etoposide-induced cell cycle arrest and apoptosis in rat bone marrow cells,” Nutrition and Cancer, vol. 57, no. 1, pp. 88–99, 2007. View at Google Scholar · View at Scopus
  105. L. M. Kostecki, M. Thomas, G. Linford et al., “Niacin deficiency delays DNA excision repair and increases spontaneous and nitrosourea-induced chromosomal instability in rat bone marrow,” Mutation Research, vol. 625, no. 1-2, pp. 50–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. J. B. Kirkland, “Niacin status and treatment-related leukemogenesis,” Molecular Cancer Therapeutics, vol. 8, no. 4, pp. 725–732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. V. Rolli, R. Armin, A. Augustin, G. Schulz, J. Menissier-de Murcia, and G. de Murcia, Poly ADP-Ribosylation Reactions: From DNA Damage and Stress Signalling to Cell Death, Oxford University Press, Oxford, UK, 2000.
  108. G. E. N. Kass, J. E. Eriksson, M. Weis, S. Orrenius, and S. C. Chow, “Chromatin condensation during apoptosis requires ATP,” Biochemical Journal, vol. 318, no. 3, pp. 749–752, 1996. View at Google Scholar · View at Scopus
  109. C. Richter, M. Schweizer, A. Cossarizza, and C. Franceschi, “Control of apoptosis by the cellular ATP level,” FEBS Letters, vol. 378, no. 2, pp. 107–110, 1996. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Stefanelli, F. Bonavita, I. Stanic' et al., “ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis,” Biochemical Journal, vol. 322, no. 3, pp. 909–917, 1997. View at Google Scholar · View at Scopus
  111. D. Ferrari, A. Stepczynska, M. Los, S. Wesselborg, and K. Schulze-Osthoff, “Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis,” Journal of Experimental Medicine, vol. 188, no. 5, pp. 979–984, 1998. View at Publisher · View at Google Scholar · View at Scopus
  112. S. D. Park, C. G. Kim, and M. G. Kim, “Inhibitors of poly(ADP-ribose) polymerase enhance DNA strand breaks, excision repair, and sister chromatid exchanges induced by alkylating agents,” Environmental Mutagenesis, vol. 5, no. 4, pp. 515–525, 1983. View at Google Scholar · View at Scopus
  113. R. W. Pero, B. Axelsson, D. Siemann, D. Chaplin, and G. Dougherty, “Newly discovered anti-inflammatory properties of the benzamides and nicotinamides,” Molecular and Cellular Biochemistry, vol. 193, no. 1-2, pp. 119–125, 1999. View at Google Scholar · View at Scopus
  114. E. Riklis, R. Kol, and R. Marko, “Trends and developments in radioprotection: the effect of nicotinamide on DNA repair,” International Journal of Radiation Biology, vol. 57, no. 4, pp. 699–708, 1990. View at Google Scholar · View at Scopus
  115. H. Zheng and P. L. Olive, “Reduction of tumor hypoxia and inhibition of DNA repair by nicotinamide after irradiation of SCCVII murine tumors and normal tissues,” Cancer Research, vol. 56, no. 12, pp. 2801–2808, 1996. View at Google Scholar · View at Scopus
  116. F. R. Althaus, S. D. Lawrence, G. L. Sattler, and H. C. Pitot, “The effect of nicotinamide on unscheduled DNA synthesis in cultured hepatocytes,” Biochemical and Biophysical Research Communications, vol. 95, no. 3, pp. 1063–1070, 1980. View at Google Scholar · View at Scopus
  117. A. Oikawa, H. Tohda, M. Kanai, M. Miwa, and T. Sugimura, “Inhibitors of poly(adenosine diphosphate ribose) polymerase induce sister chromatid exhanges,” Biochemical and Biophysical Research Communications, vol. 97, no. 4, pp. 1311–1316, 1980. View at Google Scholar · View at Scopus
  118. T. Utakoji, K. Hosoda, K. Umezawa, and M. Sawamura, “Induction of sister chromatid exchanges by nicotinamide in chinese-hamster lung fibroblasts and human-lymphoblastoid cells,” Biochemical and Biophysical Research Communications, vol. 90, no. 4, pp. 1147–1152, 1979. View at Google Scholar
  119. J. B. Kirkland, “Niacin status, NAD distribution and ADP-ribose metabolism,” Current Pharmaceutical Design, vol. 15, no. 1, pp. 3–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. P. W. Rankin, E. L. Jacobson, R. C. Benjamin, J. Moss, and M. K. Jacobson, “Quantitative studies of inhibitors of ADP-ribosylation invitro and invivo,” Journal of Biological Chemistry, vol. 264, no. 8, pp. 4312–4317, 1989. View at Google Scholar
  121. R. L. Thies and A. P. Autor, “Reactive oxygen injury to cultured pulmonary artery endothelial cells: mediation by poly(ADP-ribose) polymerase activation causing NAD depletion and altered energy balance,” Archives of Biochemistry and Biophysics, vol. 286, no. 2, pp. 353–363, 1991. View at Google Scholar · View at Scopus
  122. D. G. Hoyt and J. S. Lazo, “NAD depletion after in vitro exposure of murine lung slices to bleomycin,” Biochemical Pharmacology, vol. 46, no. 10, pp. 1819–1824, 1993. View at Publisher · View at Google Scholar · View at Scopus
  123. B. Farkas, M. Magyarlaki, B. Csete et al., “Reduction of acute photodamage in skin by topical application of a novel PARP inhibitor,” Biochemical Pharmacology, vol. 63, no. 5, pp. 921–932, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. V. A. Tronov, E. M. Konstantinov, E. Petrakou, S. Tsilimigaki, and S. M. Piperakis, “Nicotinamide "protects" resting lymphocytes exposed to hydrogen peroxide from necrosis but not from apoptosis,” Cell Biology and Toxicology, vol. 18, no. 6, pp. 359–367, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Coppola, C. Nosseri, V. Maresca, and L. Ghibelli, “Different basal NAD levels determine opposite effects of poly(ADP- ribosyl)polymerase inhibitors on H2O2-induced apoptosis,” Experimental Cell Research, vol. 221, no. 2, pp. 462–469, 1995. View at Publisher · View at Google Scholar · View at Scopus
  126. L. K. Klaidman, S. K. Mukherjee, T. P. Hutchin, and J. D. Adams, “Nicotinamide as a precursor for NAD+ prevents apoptosis in the mouse brain induced by tertiary-butylhydroperoxide,” Neuroscience Letters, vol. 206, no. 1, pp. 5–8, 1996. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Leist, B. Single, A. F. Castoldi, S. Kühnle, and P. Nicotera, “Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis,” Journal of Experimental Medicine, vol. 185, no. 8, pp. 1481–1486, 1997. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Leist, B. Single, H. Naumann et al., “Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis,” Experimental Cell Research, vol. 249, no. 2, pp. 396–403, 1999. View at Publisher · View at Google Scholar · View at Scopus
  129. S. K. Mukherjee, L. K. Klaidman, R. Yasharel, and J. D. Adams Jr., “Increased brain NAD prevents neuronal apoptosis in vivo,” European Journal of Pharmacology, vol. 330, no. 1, pp. 27–34, 1997. View at Publisher · View at Google Scholar · View at Scopus
  130. J. L. Lelli Jr., L. L. Becks, M. I. Dabrowska, and D. B. Hinshaw, “ATP converts necrosis to apoptosis in oxidant-injured endothelial cells,” Free Radical Biology and Medicine, vol. 25, no. 6, pp. 694–702, 1998. View at Publisher · View at Google Scholar · View at Scopus
  131. W. Lieberthal, S. A. Menza, and J. S. Levine, “Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells,” American Journal of Physiology, vol. 274, no. 2, pp. F315–F327, 1998. View at Google Scholar · View at Scopus
  132. Z.-H. Ran, B. Rayet, J. Rommelaere, and S. Faisst, “Parvovirus H-1-induced cell death: influence of intracellular NAD consumption on the regulation of necrosis and apoptosis,” Virus Research, vol. 65, no. 2, pp. 161–174, 1999. View at Publisher · View at Google Scholar · View at Scopus
  133. C. L. Crowley, C. M. Payne, H. Bernstein, C. Bernstein, and D. Roe, “The NAD+ precursors, nicotinic acid and nicotinamide protect cells against apoptosis induced by a multiple stress inducer, deoxycholate,” Cell Death and Differentiation, vol. 7, no. 3, pp. 314–326, 2000. View at Google Scholar · View at Scopus
  134. G. De Murcia, A. Huletsky, and D. Lamarres, “Modulation of chromatin superstructure induced by poly(ADP-ribose) synthesis and degradation,” Journal of Biological Chemistry, vol. 261, no. 15, pp. 7011–7017, 1986. View at Google Scholar · View at Scopus
  135. T. Lindahl, M. S. Satoh, G. G. Poirier, and A. Klungland, “Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks,” Trends in Biochemical Sciences, vol. 20, no. 10, pp. 405–411, 1995. View at Publisher · View at Google Scholar · View at Scopus
  136. D. Martín-Oliva, F. O'Valle, J. A. Muñoz-Gámez et al., “Crosstalk between PARP-1 and NF-κB modulates the promotion of skin neoplasia,” Oncogene, vol. 23, no. 31, pp. 5275–5283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. A. S. Baldwin, “The transcription factor NF-κB and human disease,” Journal of Clinical Investigation, vol. 107, no. 1, pp. 3–6, 2001. View at Google Scholar · View at Scopus
  138. K. Brand, P. A. Bauerle, A. K. Walli, and D. Neumeier, “The role of NF-kappa B in the pathogenesis of atherosclerosis,” Journal of Physiology, vol. 491P, pp. S2–S2, 1996. View at Google Scholar
  139. I. V. Budunova, P. Perez, V. R. Vaden, V. S. Spiegelman, T. J. Slaga, and J. L. Jorcano, “Increased expression of p50-NF-κB and constitutive activation of NF-κB transcription factors during mouse skin carcinogenesis,” Oncogene, vol. 18, no. 52, pp. 7423–7431, 1999. View at Google Scholar · View at Scopus
  140. P. O. Hassa and M. O. Hottiger, “A role of poly (ADP-Ribose) polymerase in NF-κB transcriptional activation,” Biological Chemistry, vol. 380, no. 7-8, pp. 953–959, 1999. View at Publisher · View at Google Scholar · View at Scopus
  141. F. J. Oliver, J. Menissier-de Murcia, C. Nacci et al., “Resistance to endotoxic shock as a consequence of defective NF-κB activation in poly (ADP-ribose) polymerase-1 deficient mice,” EMBO Journal, vol. 18, no. 16, pp. 4446–4454, 1999. View at Publisher · View at Google Scholar · View at Scopus
  142. D. Martin-Oliva, R. Aguilar-Quesada, F. O'Valle et al., “Inhibition of poly(ADP-ribose) polymerase modulates tumor-related gene expression, including hypoxia-inducible factor-1 activation, during skin carcinogenesis,” Cancer Research, vol. 66, no. 11, pp. 5744–5756, 2006. View at Publisher · View at Google Scholar · View at Scopus
  143. R. W. Pero, B. Axelsson, D. Siemann, D. Chaplin, and G. Dougherty, “Newly discovered anti-inflammatory properties of the benzamides and nicotinamides,” Molecular and Cellular Biochemistry, vol. 193, no. 1-2, pp. 119–125, 1999. View at Google Scholar · View at Scopus
  144. T. Nozaki, H. Fujihara, M. Watanabe et al., “Parp-1 deficiency implicated in colon and liver tumorigenesis induced by azoxymethane,” Cancer Science, vol. 94, no. 6, pp. 497–500, 2003. View at Google Scholar · View at Scopus
  145. E.-J. Yeo, Y.-S. Chun, and J.-W. Park, “New anticancer strategies targeting HIF-1,” Biochemical Pharmacology, vol. 68, no. 6, pp. 1061–1069, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. M. Ueda, “Telomerase in cutaneous carcinogenesis,” Journal of Dermatological Science, vol. 23, no. 1, pp. S37–S40, 2000. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Oren, “Decision making by p53: life, death and cancer,” Cell Death and Differentiation, vol. 10, no. 4, pp. 431–442, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. C. L. Brooks and W. Gu, “Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 164–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  149. C. M. Simbulan-Rosenthal, D. S. Rosenthal, R. Luo, and M. E. Smulson, “Poly(ADP-ribosyl)ation of p53 during apoptosis in human osteosarcoma cells,” Cancer Research, vol. 59, no. 9, pp. 2190–2194, 1999. View at Google Scholar · View at Scopus
  150. C. M. Whitacre, H. Hashimoto, M.-L. Tsai, S. Chatterjee, S. J. Berger, and N. A. Berger, “Involvement of NAD-polyADP-Ribose) metabolism in p53 regulation and its consequences,” Cancer Research, vol. 55, no. 17, pp. 3697–3701, 1995. View at Google Scholar · View at Scopus
  151. L. A. Donehower, M. Harvey, B. L. Slagle et al., “Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours,” Nature, vol. 356, no. 6366, pp. 215–221, 1992. View at Publisher · View at Google Scholar · View at Scopus
  152. K. G. McLure, M. Takagi, and M. B. Kastan, “NAD+ modulates p53 DNA binding specificity and function,” Molecular and Cellular Biology, vol. 24, no. 22, pp. 9958–9967, 2004. View at Publisher · View at Google Scholar · View at Scopus