Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2010, Article ID 525862, 19 pages
http://dx.doi.org/10.4061/2010/525862
Review Article

One Ring to Bind Them All”—Part I: The Efficiency of the Macrocyclic Scaffold for G-Quadruplex DNA Recognition

1Section Recherche, Institut Curie, CNRS UMR176, Centre Universitaire Paris XI, Batiment 110, 91405 Orsay, France
2Institut de Chimie Moléculaire, CNRS UMR5260, Université de Bourgogne, 21000 Dijon, France
3Acides Nucléiques : Dynamique, Ciblage et Fonctions Biologiques, Laboratoire des Régulations et Dynamique du Génome, CNRS, UMR5153, INSERM U565, Muséum National d'Histoire Naturelle USM 503, 43 Rue Cuvier, 75005 Paris, France
4Institut Européen de Chimie et Biologie, INSERM U869, Université de Bordeaux, 33607 Pessac Cedex, France

Received 29 January 2010; Accepted 18 February 2010

Academic Editor: R. Eritja

Copyright © 2010 David Monchaud et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid,” Nature, vol. 171, no. 4356, pp. 737–738, 1953. View at Publisher · View at Google Scholar
  2. M. H. F. Wilkins, A. R. Stokes, and H. R. Wilson, “Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids,” Nature, vol. 171, no. 4356, pp. 738–740, 1953. View at Publisher · View at Google Scholar
  3. R. E. Franklin and R. G. Gosling, “Molecular configuration in sodium thymonucleate,” Nature, vol. 171, no. 4356, pp. 740–741, 1953. View at Publisher · View at Google Scholar
  4. I. C. M. Kwan, X. Mo, and G. Wu, “Probing hydrogen bonding and ion-carbonyl interactions by solid-state 17O NMR spectroscopy: G-ribbon and G-quartet,” Journal of the American Chemical Society, vol. 129, no. 8, pp. 2398–2407, 2007. View at Publisher · View at Google Scholar · View at PubMed
  5. S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd, and S. Neidle, “Quadruplex DNA: sequence, topology and structure,” Nucleic Acids Research, vol. 34, no. 19, pp. 5402–5415, 2006. View at Publisher · View at Google Scholar · View at PubMed
  6. A. T. Phan, V. Kuryavyi, and D. J. Patel, “DNA architecture: from G to Z,” Current Opinion in Structural Biology, vol. 16, no. 3, pp. 288–298, 2006. View at Publisher · View at Google Scholar · View at PubMed
  7. D. J. Patel, A. T. Phan, and V. Kuryavyi, “Human telomere, oncogenic promoter and 5-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics,” Nucleic Acids Research, vol. 35, no. 22, pp. 7429–7455, 2007. View at Publisher · View at Google Scholar · View at PubMed
  8. J. Dai, M. Carver, and D. Yang, “Polymorphism of human telomeric quadruplex structures,” Biochimie, vol. 90, no. 8, pp. 1172–1183, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. J. T. Davis, “G-quartets 40 years later: from 5-GMP to molecular biology and supramolecular chemistry,” Angewandte Chemie International Edition, vol. 43, no. 6, pp. 668–698, 2004. View at Publisher · View at Google Scholar · View at PubMed
  10. T. de Lange, “Shelterin: the protein complex that shapes and safeguards human telomeres,” Genes and Development, vol. 19, no. 18, pp. 2100–2110, 2005. View at Publisher · View at Google Scholar · View at PubMed
  11. S. Neidle, “Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer,” FEBS Journal, vol. 277, no. 5, pp. 1118–1125, 2010. View at Publisher · View at Google Scholar · View at PubMed
  12. A. De Cian, L. Lacroix, C. Douarre et al., “Targeting telomeres and telomerase,” Biochimie, vol. 90, no. 1, pp. 131–155, 2008. View at Publisher · View at Google Scholar · View at PubMed
  13. L. Oganesian and J. Karlseder, “Telomeric armor: the layers of end protection,” Journal of Cell Science, vol. 122, no. 22, pp. 4013–4025, 2009. View at Publisher · View at Google Scholar · View at PubMed
  14. L. H. Hurley, “DNA and its associated processes as targets for cancer therapy,” Nature Reviews Cancer, vol. 2, no. 3, pp. 188–200, 2002. View at Google Scholar
  15. S. Neidle and G. Parkinson, “Telomere maintenance as a target for anticancer drug discovery,” Nature Reviews Drug Discovery, vol. 1, no. 5, pp. 383–393, 2002. View at Google Scholar
  16. J.-L. Mergny, J.-F. Riou, P. Mailliet, M.-P. Teulade-Fichou, and E. Gilson, “Natural and pharmacological regulation of telomerase,” Nucleic Acids Research, vol. 30, no. 4, pp. 839–865, 2002. View at Google Scholar
  17. E. M. Rezler, D. J. Bearss, and L. H. Hurley, “Telomere inhibition and telomere disruption as processes for drug targeting,” Annual Review of Pharmacology and Toxicology, vol. 43, pp. 359–379, 2003. View at Publisher · View at Google Scholar · View at PubMed
  18. S. Neidle and D. E. Thurston, “Chemical approaches to the discovery and development of cancer therapies,” Nature Reviews Cancer, vol. 5, no. 4, pp. 285–296, 2005. View at Publisher · View at Google Scholar · View at PubMed
  19. L. Oganesian and T. M. Bryan, “Physiological relevance of telomeric G-quadruplex formation: a potential drug target,” BioEssays, vol. 29, no. 2, pp. 155–165, 2007. View at Publisher · View at Google Scholar · View at PubMed
  20. N. Maizels, “Dynamic roles for G4 DNA in the biology of eukaryotic cells,” Nature Structural and Molecular Biology, vol. 13, no. 12, pp. 1055–1059, 2006. View at Publisher · View at Google Scholar · View at PubMed
  21. M. Fry, “Tetraplex DNA and its interacting proteins,” Frontiers in Bioscience, vol. 12, pp. 4336–4351, 2007. View at Publisher · View at Google Scholar
  22. L. Kelland, “Targeting the limitless replicative potential of cancer: the telomerase/telomere pathway,” Clinical Cancer Research, vol. 13, no. 17, pp. 4960–4963, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. B. Pagano and C. Giancola, “Energetics of quadruplex-drug recognition in anticancer therapy,” Current Cancer Drug Targets, vol. 7, no. 6, pp. 520–540, 2007. View at Publisher · View at Google Scholar
  24. S. Balasubramanian and S. Neidle, “G-quadruplex nucleic acids as therapeutic targets,” Current Opinion in Chemical Biology, vol. 13, no. 3, pp. 345–353, 2009. View at Publisher · View at Google Scholar · View at PubMed
  25. A. De Cian, G. Cristofari, P. Reichenbach et al., “Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 44, pp. 17347–17352, 2007. View at Publisher · View at Google Scholar · View at PubMed
  26. Y. Qin and L. H. Hurley, “Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions,” Biochimie, vol. 90, no. 8, pp. 1149–1171, 2008. View at Publisher · View at Google Scholar · View at PubMed
  27. P. S. Shirude, B. Okumus, L. Ying, T. Ha, and S. Balasubramanian, “Single-molecule conformational analysis of G-quadruplex formation in the promoter DNA duplex of the proto-oncogene C-kit,” Journal of the American Chemical Society, vol. 129, no. 24, pp. 7484–7485, 2007. View at Publisher · View at Google Scholar · View at PubMed
  28. J. Eddy and N. Maizels, “Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes,” Nucleic Acids Research, vol. 36, no. 4, pp. 1321–1333, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. D. Monchaud and M.-P. Teulade-Fichou, “A hitchhiker's guide to G-quadruplex ligands,” Organic and Biomolecular Chemistry, vol. 6, no. 4, pp. 627–636, 2008. View at Publisher · View at Google Scholar · View at PubMed
  30. A. Arola and R. Vilar, “Stabilisation of G-quadruplex DNA by small molecules,” Current Topics in Medicinal Chemistry, vol. 8, no. 15, pp. 1405–1415, 2008. View at Publisher · View at Google Scholar
  31. M. Franceschin, “G-quadruplex DNA structures and organic chemistry: more than one connection,” European Journal of Organic Chemistry, no. 14, pp. 2225–2238, 2009. View at Publisher · View at Google Scholar
  32. S. Neidle, “The structures of quadruplex nucleic acids and their drug complexes,” Current Opinion in Structural Biology, vol. 19, no. 3, pp. 239–250, 2009. View at Publisher · View at Google Scholar · View at PubMed
  33. K. Shin-ya, K. Wierzba, K. Matsuo et al., “Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus,” Journal of the American Chemical Society, vol. 123, no. 6, pp. 1262–1263, 2001. View at Publisher · View at Google Scholar
  34. F. X. Han, R. T. Wheelhouse, and L. H. Hurley, “Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition,” Journal of the American Chemical Society, vol. 121, no. 15, pp. 3561–3570, 1999. View at Publisher · View at Google Scholar
  35. D.-F. Shi, R. T. Wheelhouse, D. Sun, and L. H. Hurley, “Quadruplex-interactive agents as telomerase inhibitors: synthesis of porphyrins and structure-activity relationship for the inhibition of telomerase,” Journal of Medicinal Chemistry, vol. 44, no. 26, pp. 4509–4523, 2001. View at Publisher · View at Google Scholar
  36. J.-L. Mergny and L. Lacroix, “UV melting of G-quadruplexes,” Current Protocols in Nucleic Acid Chemistry, supplement 37, pp. 17.1.1–17.1.15, 2009. View at Publisher · View at Google Scholar · View at PubMed
  37. A. De Cian, L. Guittat, M. Kaiser et al., “Fluorescence-based melting assays for studying quadruplex ligands,” Methods, vol. 42, no. 2, pp. 183–195, 2007. View at Publisher · View at Google Scholar · View at PubMed
  38. J. Fajkus, “Detection of telomerase activity by the TRAP assay and its variants and alternatives,” Clinica Chimica Acta, vol. 371, no. 1-2, pp. 25–31, 2006. View at Publisher · View at Google Scholar · View at PubMed
  39. E. F. Pettersen, T. D. Goddard, C. C. Huang et al., “UCSF Chimera—a visualization system for exploratory research and analysis,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004. View at Publisher · View at Google Scholar · View at PubMed
  40. W. Liu, D. Sun, and L. H. Hurley, “Binding of G-quadruplex-interactive agents to distinct G-quadruplexes induces different biological effects in MiaPaCa cells,” Nucleosides, Nucleotides and Nucleic Acids, vol. 24, no. 10–12, pp. 1801–1815, 2005. View at Publisher · View at Google Scholar
  41. M. Sumi, T. Tauchi, G. Sashida et al., “A G-quadruplex-interactive agent, telomestatin (SOT-095), induces telomere shortening with apoptosis and enhances chemosensitivity in acute myeloid leukemia,” International Journal of Oncology, vol. 24, no. 6, pp. 1481–1487, 2004. View at Google Scholar
  42. T. Tauchi, K. Shin-ya, G. Sashida et al., “Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia,” Oncogene, vol. 25, no. 42, pp. 5719–5725, 2006. View at Publisher · View at Google Scholar · View at PubMed
  43. H. Tahara, K. Shin-ya, H. Seimiya, H. Yamada, T. Tsuruo, and T. Ide, “G-Quadruplex stabilization by telomestatin induces TRF2 protein dissociation from telomeres and anaphase bridge formation accompanied by loss of the 3 telomeric overhang in cancer cells,” Oncogene, vol. 25, no. 13, pp. 1955–1966, 2006. View at Publisher · View at Google Scholar · View at PubMed
  44. D. Gomez, T. Wenner, B. Brassart et al., “Telomestatin-induced telomere uncapping is modulated by POT1 through G-overhang extension in HT1080 human tumor cells,” Journal of Biological Chemistry, vol. 281, no. 50, pp. 38721–38729, 2006. View at Publisher · View at Google Scholar · View at PubMed
  45. M.-Y. Kim, M. Gleason-Guzman, E. Izbicka, D. Nishioka, and L. H. Hurley, “The different biological effects of Telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures,” Cancer Research, vol. 63, no. 12, pp. 3247–3256, 2003. View at Google Scholar
  46. D. Gomez, M.-F. O'Donohue, T. Wenner et al., “The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells,” Cancer Research, vol. 66, no. 14, pp. 6908–6912, 2006. View at Publisher · View at Google Scholar · View at PubMed
  47. M. A. Shammas, R. J. Shmookler Reis, C. Li et al., “Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma,” Clinical Cancer Research, vol. 10, no. 2, pp. 770–776, 2004. View at Publisher · View at Google Scholar
  48. N. Binz, T. Shalaby, P. Rivera, K. Shin-ya, and M. A. Grotzer, “Telomerase inhibition, telomere shortening, cell growth suppression and induction of apoptosis by telomestatin in childhood neuroblastoma cells,” European Journal of Cancer, vol. 41, no. 18, pp. 2873–2881, 2005. View at Publisher · View at Google Scholar · View at PubMed
  49. N. Arnoult, K. Shin-ya, and J. A. Londoño-Vallejo, “Studying telomere replication by Q-CO-FISH: the effect of telomestatin, a potent G-quadruplex ligand,” Cytogenetic and Genome Research, vol. 122, no. 3-4, pp. 229–236, 2009. View at Publisher · View at Google Scholar · View at PubMed
  50. D. Sun, K. Guo, J. J. Rusche, and L. H. Hurley, “Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents,” Nucleic Acids Research, vol. 33, no. 18, pp. 6070–6080, 2005. View at Publisher · View at Google Scholar · View at PubMed
  51. S. L. Palumbo, S. W. Ebbinghaus, and L. H. Hurley, “Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands,” Journal of the American Chemical Society, vol. 131, no. 31, pp. 10878–10891, 2009. View at Publisher · View at Google Scholar · View at PubMed
  52. J. Seenisamy, S. Bashyam, V. Gokhale et al., “Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure,” Journal of the American Chemical Society, vol. 127, no. 9, pp. 2944–2959, 2005. View at Publisher · View at Google Scholar · View at PubMed
  53. T. S. Dexheimer, D. Sun, and L. H. Hurley, “Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter,” Journal of the American Chemical Society, vol. 128, no. 16, pp. 5404–5415, 2006. View at Publisher · View at Google Scholar · View at PubMed
  54. K. Guo, A. Pourpak, K. Beetz-Rogers, V. Gokhale, D. Sun, and L. H. Hurley, “Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene,” Journal of the American Chemical Society, vol. 129, no. 33, pp. 10220–10228, 2007. View at Publisher · View at Google Scholar · View at PubMed
  55. Y. Wu, K. Shin-ya, and R. M. Brosh Jr., “FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability,” Molecular and Cellular Biology, vol. 28, no. 12, pp. 4116–4128, 2008. View at Publisher · View at Google Scholar · View at PubMed
  56. N. Temime-Smaali, L. Guittat, A. Sidibe, K. Shin-ya, C. Trentesaux, and J.-F. Riou, “The G-quadruplex ligand telomestatin impairs binding of topoisomerase IIIα to G-quadruplex-forming oligonucleotides and uncaps telomeres in ALT cells,” PLoS ONE, vol. 4, no. 9, article e6919, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. M.-Y. Kim, H. Vankayalapati, K. Shin-ya, K. Wierzba, and L. H. Hurley, “Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex,” Journal of the American Chemical Society, vol. 124, no. 10, pp. 2098–2099, 2002. View at Publisher · View at Google Scholar
  58. S. Agrawal, R. P. Ojha, and S. Maiti, “Energetics of the human tel-22 quadruplex—telomestatin interaction: a molecular dynamics study,” Journal of Physical Chemistry B, vol. 112, no. 22, pp. 6828–6836, 2008. View at Publisher · View at Google Scholar · View at PubMed
  59. E. M. Rezler, J. Seenisamy, S. Bashyam et al., “Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure,” Journal of the American Chemical Society, vol. 127, no. 26, pp. 9439–9447, 2005. View at Publisher · View at Google Scholar · View at PubMed
  60. T. I. Gaynutdinov, R. D. Neumann, and I. G. Panyutin, “Structural polymorphism of intramolecular quadruplex of human telomeric DNA: effect of cations, quadruplex-binding drugs and flanking sequences,” Nucleic Acids Research, vol. 36, no. 12, pp. 4079–4087, 2008. View at Publisher · View at Google Scholar · View at PubMed
  61. J. Deeley and G. Pattenden, “Synthesis and establishment of stereochemistry of the unusual polyoxazole-thiazole based cyclopeptide YM-216391 isolated from Streptomyces nobilis,” Chemical Communications, no. 6, pp. 797–799, 2005. View at Publisher · View at Google Scholar · View at PubMed
  62. J. M. Atkins and E. Vedejs, “A two-stage iterative process for the synthesis of poly-oxazoles,” Organic Letters, vol. 7, no. 15, pp. 3351–3354, 2005. View at Publisher · View at Google Scholar · View at PubMed
  63. C. M. Marson and M. Saadi, “Synthesis of the penta-oxazole core of telomestatin in a convergent approach to poly-oxazole macrocycles,” Organic and Biomolecular Chemistry, vol. 4, no. 21, pp. 3892–3893, 2006. View at Publisher · View at Google Scholar · View at PubMed
  64. S. K. Chattopadhyay and S. Biswas, “Convergent synthesis of a 24-membered macrocyclic hexaoxazole derivative related to the novel telomerase inhibitor telomestatin,” Tetrahedron Letters, vol. 47, no. 45, pp. 7897–7900, 2006. View at Publisher · View at Google Scholar
  65. D. Hernandez, E. Riego, A. Francesch, C. Cuevas, F. Albericio, and M. Alvarez, “Preparation of penta-azole containing cyclopeptides: challenges in macrocyclization,” Tetrahedron, vol. 63, no. 39, pp. 9862–9870, 2007. View at Publisher · View at Google Scholar
  66. T. Doi, M. Yoshida, K. Shin-ya, and T. Takahashi, “Total synthesis of (R)-telomestatin,” Organic Letters, vol. 8, no. 18, pp. 4165–4167, 2006. View at Publisher · View at Google Scholar · View at PubMed
  67. G. S. Minhas, D. S. Pilch, J. E. Kerrigan, E. J. LaVoie, and J. E. Rice, “Synthesis and G-quadruplex stabilizing properties of a series of oxazole-containing macrocycles,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 15, pp. 3891–3895, 2006. View at Publisher · View at Google Scholar · View at PubMed
  68. C. M. Barbieri, A. R. Srinivasan, S. G. Rzuczek, J. E. Rice, E. J. LaVoie, and D. S. Pilch, “Defining the mode, energetics and specificity with which a macrocyclic hexaoxazole binds to human telomeric G-quadruplex DNA,” Nucleic Acids Research, vol. 35, no. 10, pp. 3272–3286, 2007. View at Publisher · View at Google Scholar · View at PubMed
  69. M. Tera, Y. Sohtome, H. Ishizuka et al., “Design and synthesis of telomestatin derivatives and their inhibitory activity of telomerase,” Heterocycles, vol. 69, no. 1, pp. 505–514, 2006. View at Google Scholar
  70. Y.-C. Tsai, H. Qi, C.-P. Lin et al., “A G-quadruplex stabilizer induces M-phase cell cycle arrest,” Journal of Biological Chemistry, vol. 284, no. 34, pp. 22535–22543, 2009. View at Publisher · View at Google Scholar · View at PubMed
  71. M. Satyanarayana, S. G. Rzuczek, E. J. LaVoie et al., “Ring-closing metathesis for the synthesis of a highly G-quadruplex selective macrocyclic hexaoxazole having enhanced cytotoxic potency,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 13, pp. 3802–3804, 2008. View at Publisher · View at Google Scholar · View at PubMed
  72. D. S. Pilch, C. M. Barbieri, S. G. Rzuczek, E. J. LaVoie, and J. E. Rice, “Targeting human telomeric G-quadruplex DNA with oxazole-containing macrocyclic compounds,” Biochimie, vol. 90, no. 8, pp. 1233–1249, 2008. View at Publisher · View at Google Scholar · View at PubMed
  73. S. G. Rzuczek, D. S. Pilch, E. J. LaVoie, and J. E. Rice, “Lysinyl macrocyclic hexaoxazoles: synthesis and selective G-quadruplex stabilizing properties,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 3, pp. 913–917, 2008. View at Publisher · View at Google Scholar · View at PubMed
  74. Calculator Plugins were used for pKa calculation, Marvin 5.0.1, 2008, ChemAxon, http://www.chemaxon.com/.
  75. M. Tera, H. Ishizuka, M. Takagi, M. Suganuma, K. Shin-ya, and K. Nagasawa, “Macrocyclic hexaoxazoles as sequence- and mode-selective G-quadruplex binders,” Angewandte Chemie International Edition, vol. 47, no. 30, pp. 5557–5560, 2008. View at Publisher · View at Google Scholar · View at PubMed
  76. K. Iida, M. Tera, T. Hirokawa, K. Shin-ya, and K. Nagasawa, “G-quadruplex recognition by macrocyclic hexaoxazole (6OTD) dimer: greater selectivity than monomer,” Chemical Communications, no. 42, pp. 6481–6483, 2009. View at Publisher · View at Google Scholar · View at PubMed
  77. M. Tera, K. Iida, H. Ishizuka et al., “Synthesis of a potent G-quadruplex-binding macrocyclic heptaoxazole,” ChemBioChem, vol. 10, no. 3, pp. 431–435, 2009. View at Publisher · View at Google Scholar · View at PubMed
  78. K. Jantos, R. Rodriguez, S. Ladame, P. S. Shirude, and S. Balasubramanian, “Oxazole-based peptide macrocycles: a new class of G-quadruplex binding ligands,” Journal of the American Chemical Society, vol. 128, no. 42, pp. 13662–13663, 2006. View at Publisher · View at Google Scholar · View at PubMed
  79. T. K. Chakraborty, A. Arora, S. Roy, N. Kumar, and S. Maiti, “Furan based cyclic oligopeptides selectively target G-quadruplex,” Journal of Medicinal Chemistry, vol. 50, no. 23, pp. 5539–5542, 2007. View at Publisher · View at Google Scholar · View at PubMed
  80. P. S. Shirude, E. R. Gillies, S. Ladame et al., “Macrocyclic and helical oligoamides as a new class of G-quadruplex ligands,” Journal of the American Chemical Society, vol. 129, no. 39, pp. 11890–11891, 2007. View at Publisher · View at Google Scholar · View at PubMed
  81. P. V. Jena, P. S. Shirude, B. Okumus et al., “G-quadruplex DNA bound by a synthetic ligand is highly dynamic,” Journal of the American Chemical Society, vol. 131, no. 35, pp. 12522–12523, 2009. View at Publisher · View at Google Scholar · View at PubMed
  82. R. J. Fiel, J. C. Howard, E. H. Mark, and N. Datta Gupta, “Interaction of DNA with a porphyrin ligand: evidence for intercalation,” Nucleic Acids Research, vol. 6, no. 9, pp. 3093–3118, 1979. View at Google Scholar
  83. R. J. Fiel and B. R. Munson, “Binding of meso-tetra (4-N-methylpyridyl) porphine to DNA,” Nucleic Acids Research, vol. 8, no. 12, pp. 2835–2842, 1980. View at Google Scholar
  84. R. F. Pasternack, E. J. Gibbs, and J. J. Villafranca, “Interactions of porphyrins with nucleic acids,” Biochemistry, vol. 22, no. 10, pp. 2406–2414, 1983. View at Google Scholar
  85. E. Izbicka, R. T. Wheelhouse, E. Raymond et al., “Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells,” Cancer Research, vol. 59, no. 3, pp. 639–644, 1999. View at Google Scholar
  86. A. De Cian, L. Guittat, K. Shin-ya, J. F. Riou, and J. L. Mergny, “Affinity and selectivity of G4 ligands measured by FRET,” Nucleic Acids Symposium Series, no. 49, pp. 235–236, 2005. View at Google Scholar
  87. J. Ren and J. B. Chaires, “Sequence and structural selectivity of nucleic acid binding ligands,” Biochemistry, vol. 38, no. 49, pp. 16067–16075, 1999. View at Publisher · View at Google Scholar
  88. D. Monchaud, C. Allain, and M.-P. Teulade-Fichou, “Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 18, pp. 4842–4845, 2006. View at Publisher · View at Google Scholar · View at PubMed
  89. A. Granzhan, H. Ihmels, and K. Jäger, “Diazonia- and tetraazoniapolycyclic cations as motif for quadruplex-DNA ligands,” Chemical Communications, no. 10, pp. 1249–1251, 2009. View at Publisher · View at Google Scholar · View at PubMed
  90. E. W. White, F. Tanious, M. A. Ismail et al., “Structure-specific recognition of quadruplex DNA by organic cations: influence of shape, substituents and charge,” Biophysical Chemistry, vol. 126, no. 1–3, pp. 140–153, 2007. View at Publisher · View at Google Scholar · View at PubMed
  91. P. Wang, L. Ren, H. He, F. Liang, X. Zhou, and Z. Tan, “A phenol quaternary ammonium porphyrin as a potent telomerase inhibitor by selective interaction with quadruplex DNA,” ChemBioChem, vol. 7, no. 8, pp. 1155–1159, 2006. View at Publisher · View at Google Scholar · View at PubMed
  92. T. A. Brooks and L. H. Hurley, “The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics,” Nature Reviews Cancer, vol. 9, no. 12, pp. 849–861, 2009. View at Publisher · View at Google Scholar · View at PubMed
  93. A. Rangan, O. Y. Fedoroff, and L. H. Hurley, “Induction of duplex to G-quadruplex transition in the c-myc promoter region by a small molecule,” Journal of Biological Chemistry, vol. 276, no. 7, pp. 4640–4646, 2001. View at Publisher · View at Google Scholar · View at PubMed
  94. A. Siddiqui-Jain, C. L. Grand, D. J. Bearss, and L. H. Hurley, “Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11593–11598, 2002. View at Publisher · View at Google Scholar · View at PubMed
  95. C. L. Grand, H. Han, R. M. Muñoz et al., “The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo,” Molecular Cancer Therapeutics, vol. 1, no. 8, pp. 565–573, 2002. View at Google Scholar
  96. J. Seenisamy, E. M. Rezler, T. J. Powell et al., “The dynamic character of the G-quadruplex element in the c-MYC promoter and modification by TMPyP4,” Journal of the American Chemical Society, vol. 126, no. 28, pp. 8702–8709, 2004. View at Publisher · View at Google Scholar · View at PubMed
  97. C. L. Grand, T. J. Powell, R. B. Nagle et al., “Mutations in the G-quadruplex silencer element and their relationship to c-MYC overexpression, NM23 repression, and therapeutic rescue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 16, pp. 6140–6145, 2004. View at Publisher · View at Google Scholar · View at PubMed
  98. D. Yang and L. Hurley, “Structure of the biologically relevant g-quadruplex in the c-MYC promoter,” Nucleosides, Nucleotides and Nucleic Acids, vol. 25, no. 8, pp. 951–968, 2006. View at Publisher · View at Google Scholar · View at PubMed
  99. M. W. Freyer, R. Buscaglia, K. Kaplan, D. Cashman, L. H. Hurley, and E. A. Lewis, “Biophysical studies of the c-MYC NHE III1 promoter: model quadruplex interactions with a cationic porphyrin,” Biophysical Journal, vol. 92, no. 6, pp. 2007–2015, 2007. View at Publisher · View at Google Scholar · View at PubMed
  100. D. J. Cashman, R. Buscaglia, M. W. Freyer, J. Dettler, L. H. Hurley, and E. A. Lewis, “Molecular modeling and biophysical analysis of the c-MYC NHE-III1 silencer element,” Journal of Molecular Modeling, vol. 14, no. 2, pp. 93–101, 2008. View at Publisher · View at Google Scholar · View at PubMed
  101. R. De Armond, S. Wood, D. Sun, L. H. Hurley, and S. W. Ebbinghaus, “Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1α promoter,” Biochemistry, vol. 44, no. 49, pp. 16341–16350, 2005. View at Publisher · View at Google Scholar · View at PubMed
  102. D. Sun, W.-J. Liu, K. Guo et al., “The proximal promoter region of the human vascular endothelial growth factor gene has a G-quadruplex structure that can be targeted by G-quadruplex-interactive agents,” Molecular Cancer Therapeutics, vol. 7, no. 4, pp. 880–889, 2008. View at Publisher · View at Google Scholar · View at PubMed
  103. K. Guo, V. Gokhale, L. H. Hurley, and D. Sun, “Intramolecularly folded G-quadruplex and i-motif structures in the proximal promoter of the vascular endothelial growth factor gene,” Nucleic Acids Research, vol. 36, no. 14, pp. 4598–4608, 2008. View at Publisher · View at Google Scholar · View at PubMed
  104. J. Dai, D. Chen, R. A. Jones, L. H. Hurley, and D. Yang, “NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region,” Nucleic Acids Research, vol. 34, no. 18, pp. 5133–5144, 2006. View at Publisher · View at Google Scholar · View at PubMed
  105. M. del Toro, P. Bucek, A. Avino et al., “Targeting the G-quadruplex-forming region near the P1 promoter in the human BCL-2 gene with the cationic porphyrin TMPyP4 and with the complementary C-rich strand,” Biochimie, vol. 91, no. 7, pp. 894–902, 2009. View at Publisher · View at Google Scholar · View at PubMed
  106. M. Paramasivam, A. Membrino, S. Cogoi, H. Fukuda, H. Nakagama, and L. E. Xodo, “Protein hnRNP A1 and its derivative Up1 unfold quadruplex DNA in the human KRAS promoter: implications for transcription,” Nucleic Acids Research, vol. 37, no. 9, pp. 2841–2853, 2009. View at Publisher · View at Google Scholar · View at PubMed
  107. Y. Qin, E. M. Rezler, V. Gokhale, D. Sun, and L. H. Hurley, “Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4,” Nucleic Acids Research, vol. 35, no. 22, pp. 7698–7713, 2007. View at Publisher · View at Google Scholar · View at PubMed
  108. M. Gunaratnam, S. Swank, S. M. Haider et al., “Targeting human gastrointestinal stromal tumor cells with a quadruplex-binding small molecule,” Journal of Medicinal Chemistry, vol. 52, no. 12, pp. 3774–3783, 2009. View at Publisher · View at Google Scholar · View at PubMed
  109. Y. Mikami-Terao, M. Akiyama, Y. Yuza et al., “Antitumor activity of TMPyP4 interacting G-quadruplex in retinoblastoma cell lines,” Experimental Eye Research, vol. 89, no. 2, pp. 200–208, 2009. View at Publisher · View at Google Scholar · View at PubMed
  110. Y. Mikami-Terao, M. Akiyama, Y. Yuza, T. Yanagisawa, O. Yamada, and H. Yamada, “Antitumor activity of G-quadruplex-interactive agent TMPyP4 in K562 leukemic cells,” Cancer Letters, vol. 261, no. 2, pp. 226–234, 2008. View at Publisher · View at Google Scholar · View at PubMed
  111. A. Verma, K. Halder, R. Halder et al., “Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species,” Journal of Medicinal Chemistry, vol. 51, no. 18, pp. 5641–5649, 2008. View at Publisher · View at Google Scholar · View at PubMed
  112. M. Wieland and J. S. Hartig, “Turning inhibitors into activators: a hammerhead ribozyme controlled by a guanine quadruplex,” Angewandte Chemie International Edition, vol. 45, no. 35, pp. 5875–5878, 2006. View at Publisher · View at Google Scholar · View at PubMed
  113. Y. Xu, Y. Hirao, Y. Nishimura, and H. Sugiyama, “I-motif and quadruplex-based device that can control a protein release or bind and release small molecule to influence biological processes,” Bioorganic and Medicinal Chemistry, vol. 15, no. 3, pp. 1275–1279, 2007. View at Publisher · View at Google Scholar · View at PubMed
  114. A. K. Pomerantz, W. E. Moerner, and E. T. Kool, “Visualization of long human telomere mimics by single-molecule fluorescence imaging,” Journal of Physical Chemistry B, vol. 112, no. 42, pp. 13184–13187, 2008. View at Publisher · View at Google Scholar · View at PubMed
  115. Z. Chen, K.-W. Zheng, Y.-H. Hao, and Z. Tan, “Reduced or diminished stabilization of the telomere G-quadruplex and inhibition of telomerase by small chemical ligands under molecular crowding condition,” Journal of the American Chemical Society, vol. 131, no. 30, pp. 10430–10438, 2009. View at Publisher · View at Google Scholar · View at PubMed
  116. P. Weisman-Shomer, E. Cohen, I. Hershco et al., “The cationic porphyrin TMPyP4 destabilizes the tetraplex form of the fragile X syndrome expanded sequence d(CGG)n,” Nucleic Acids Research, vol. 31, no. 14, pp. 3963–3970, 2003. View at Publisher · View at Google Scholar
  117. A. Joachimi, G. Mayer, and J. S. Hartig, “A new anticoagulant-antidote pair: control of thrombin activity by aptamers and porphyrins,” Journal of the American Chemical Society, vol. 129, no. 11, pp. 3036–3037, 2007. View at Publisher · View at Google Scholar · View at PubMed
  118. N. Ofer, P. Weisman-Shomer, J. Shklover, and M. Fry, “The quadruplex r(CGG)n destabilizing cationic porphyrin TMPyP4 cooperates with hnRNPs to increase the translation efficiency of fragile X premutation mRNA,” Nucleic Acids Research, vol. 37, no. 8, pp. 2712–2722, 2009. View at Publisher · View at Google Scholar · View at PubMed
  119. C. Wei, G. Jia, J. Yuan, Z. Feng, and C. Li, “A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs,” Biochemistry, vol. 45, no. 21, pp. 6681–6691, 2006. View at Publisher · View at Google Scholar · View at PubMed
  120. A. T. Phan, V. Kuryavyi, H. Y. Gaw, and D. J. Patel, “Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter,” Nature Chemical Biology, vol. 1, no. 3, pp. 167–173, 2005. View at Publisher · View at Google Scholar · View at PubMed
  121. G. N. Parkinson, R. Ghosh, and S. Neidle, “Structural basis for binding of porphyrin to human telomeres,” Biochemistry, vol. 46, no. 9, pp. 2390–2397, 2007. View at Publisher · View at Google Scholar · View at PubMed
  122. M. Cavallari, A. Garbesi, and R. Di Felice, “Porphyrin intercalation in G4-DNA quadruplexes by molecular dynamics simulations,” Journal of Physical Chemistry B, vol. 113, no. 40, pp. 13152–13160, 2009. View at Publisher · View at Google Scholar · View at PubMed
  123. Y. Ishikawa and S. Fujii, “Molecular docking study of binding of TMPyP4 to a bimolecular human telomeric G-quadruplex,” Nucleic Acids Symposium Series, vol. 52, no. 1, pp. 173–179, 2008. View at Publisher · View at Google Scholar · View at PubMed
  124. G. Jia, Z. Feng, C. Wei, J. Zhou, X. Wang, and C. Li, “Dynamic insight into the interaction between porphyrin and G-quadruplex DNAs: time-resolved fluorescence anisotropy study,” Journal of Physical Chemistry B, vol. 113, no. 50, pp. 16237–16245, 2009. View at Publisher · View at Google Scholar · View at PubMed
  125. C. Wei, G. Jia, J. Zhou, G. Han, and C. Li, “Evidence for the binding mode of porphyrins to G-quadruplex DNA,” Physical Chemistry Chemical Physics, vol. 11, no. 20, pp. 4025–4032, 2009. View at Publisher · View at Google Scholar · View at PubMed
  126. C. Wei, L. Wang, G. Jia, J. Zhou, G. Han, and C. Li, “The binding mode of porphyrins with cation side arms to (TG4T)4 G-quadruplex: spectroscopic evidence,” Biophysical Chemistry, vol. 143, no. 1-2, pp. 79–84, 2009. View at Publisher · View at Google Scholar · View at PubMed
  127. H.-J. Zhang, X.-F. Wang, P. Wang, X.-C. Ai, and J.-P. Zhang, “Spectroscopic study on the binding of a cationic porphyrin to DNA G-quadruplex under different K+ concentrations,” Photochemical and Photobiological Sciences, vol. 7, no. 8, pp. 948–955, 2008. View at Publisher · View at Google Scholar · View at PubMed
  128. H. Zhang, X. Xiao, P. Wang et al., “Conformational conversion of DNA G-quadruplex induced by a cationic porphyrin,” Spectrochimica Acta A, vol. 74, no. 1, pp. 243–247, 2009. View at Publisher · View at Google Scholar · View at PubMed
  129. I. Lubitz, N. Borovok, and A. Kotlyar, “Interaction of monomolecular G4-DNA nanowires with TMPyP: evidence for intercalation,” Biochemistry, vol. 46, no. 45, pp. 12925–12929, 2007. View at Publisher · View at Google Scholar · View at PubMed
  130. A. Arora and S. Maiti, “Stability and molecular recognition of quadruplexes with different loop length in the absence and presence of molecular crowding agents,” Journal of Physical Chemistry B, vol. 113, no. 25, pp. 8784–8792, 2009. View at Publisher · View at Google Scholar · View at PubMed
  131. I. Haq, J. O. Trent, B. Z. Chowdhry, and T. C. Jenkins, “Intercalative G-tetraplex stabilization of telomeric DNA by a cationic porphyrin,” Journal of the American Chemical Society, vol. 121, no. 9, pp. 1768–1779, 1999. View at Publisher · View at Google Scholar
  132. L. Martino, B. Pagano, I. Fotticchia, S. Neidle, and C. Giancola, “Shedding light on the interaction between TMPyP4 and human telomeric quadruplexes,” Journal of Physical Chemistry B, vol. 113, no. 44, pp. 14779–14786, 2009. View at Publisher · View at Google Scholar · View at PubMed
  133. A. Arora and S. Maiti, “Effect of loop orientation on quadruplex—TMPyP4 interaction,” Journal of Physical Chemistry B, vol. 112, no. 27, pp. 8151–8159, 2008. View at Publisher · View at Google Scholar · View at PubMed
  134. H. Li, Y. Liu, S. Lin, and G. Yuan, “Spectroscopy probing of the formation, recognition, and conversion of a G-quadruplex in the promoter region of the bcl-2 oncogene,” Chemistry: A European Journal, vol. 15, no. 10, pp. 2445–2452, 2009. View at Publisher · View at Google Scholar · View at PubMed
  135. R. D. Gray, J. Li, and J. B. Chaires, “Energetics and kinetics of a conformational switch in G-quadruplex DNA,” Journal of Physical Chemistry B, vol. 113, no. 9, pp. 2676–2683, 2009. View at Publisher · View at Google Scholar
  136. M. del Toro, R. Gargallo, R. Eritja, and J. Jaumot, “Study of the interaction between the G-quadruplex-forming thrombin-binding aptamer and the porphyrin 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)-21,23H-porphyrin tetratosylate,” Analytical Biochemistry, vol. 379, no. 1, pp. 8–15, 2008. View at Publisher · View at Google Scholar · View at PubMed
  137. C. Vialas, G. Pratviel, and B. Meunier, “Oxidative damage generated by an oxo-metalloporphyrin onto the human telomeric sequence,” Biochemistry, vol. 39, no. 31, pp. 9514–9522, 2000. View at Publisher · View at Google Scholar
  138. A. Maraval, S. Franco, C. Vialas, G. Pratviel, M. A. Blasco, and B. Meunier, “Porphyrin-aminoquinoline conjugates as telomerase inhibitors,” Organic and Biomolecular Chemistry, vol. 1, no. 6, pp. 921–927, 2003. View at Publisher · View at Google Scholar
  139. I. M. Dixon, F. Lopez, J.-P. Estève et al., “Porphyrin derivatives for telomere binding and telomerase inhibition,” ChemBioChem, vol. 6, no. 1, pp. 123–132, 2005. View at Publisher · View at Google Scholar · View at PubMed
  140. L. R. Keating and V. A. Szalai, “Parallel-stranded guanine quadruplex interactions with a copper cationic porphyrin,” Biochemistry, vol. 43, no. 50, pp. 15891–15900, 2004. View at Publisher · View at Google Scholar · View at PubMed
  141. S. E. Evans, M. A. Mendez, K. B. Turner et al., “End-stacking of copper cationic porphyrins on parallel-stranded guanine quadruplexes,” Journal of Biological Inorganic Chemistry, vol. 12, no. 8, pp. 1235–1249, 2007. View at Publisher · View at Google Scholar · View at PubMed
  142. J. Pan and S. Zhang, “Interaction between cationic zinc porphyrin and lead ion induced telomeric guanine quadruplexes: evidence for end-stacking,” Journal of Biological Inorganic Chemistry, vol. 14, no. 3, pp. 401–407, 2009. View at Publisher · View at Google Scholar · View at PubMed
  143. I. M. Dixon, F. Lopez, A. M. Tejera et al., “A G-quadruplex ligand with 10000-fold selectivity over duplex DNA,” Journal of the American Chemical Society, vol. 129, no. 6, pp. 1502–1503, 2007. View at Publisher · View at Google Scholar · View at PubMed
  144. B. Nguyen, F. A. Tanious, and W. D. Wilson, “Biosensor-surface plasmon resonance: quantitative analysis of small molecule-nucleic acid interactions,” Methods, vol. 42, no. 2, pp. 150–161, 2007. View at Publisher · View at Google Scholar · View at PubMed
  145. D. P. N. Gonçalves, S. Ladame, S. Balasubramanian, and J. K. M. Sanders, “Synthesis and G-quadruplex binding studies of new 4-N-methylpyridinium porphyrins,” Organic and Biomolecular Chemistry, vol. 4, no. 17, pp. 3337–3342, 2006. View at Publisher · View at Google Scholar · View at PubMed
  146. R. McGuire Jr. and D. R. McMillin, “Steric effects direct the binding of porphyrins to tetramolecular quadruplex DNA,” Chemical Communications, no. 47, pp. 7393–7395, 2009. View at Publisher · View at Google Scholar · View at PubMed
  147. N. P. E. Barry, N. H. Abd Karim, R. Vilar, and B. Therrien, “Interactions of ruthenium coordination cubes with DNA,” Dalton Transactions, no. 48, pp. 10717–10719, 2009. View at Publisher · View at Google Scholar · View at PubMed
  148. R. Kieltyka, P. Englebienne, J. Fakhoury, C. Autexier, N. Moitessier, and H. F. Sleiman, “A platinum supramolecular square as an effective G-quadruplex binder and telomerase inhibitor,” Journal of the American Chemical Society, vol. 130, no. 31, pp. 10040–10041, 2008. View at Publisher · View at Google Scholar · View at PubMed
  149. T. Lu and L. H. Hurley, “Synthesis of 5,10,15,20-tetra(N-methyl-6-quinolyl)-21,23-dithiaporphyrin chloride as cationic core-modified porphyrin,” Chinese Chemical Letters, vol. 15, no. 11, pp. 1261–1264, 2004. View at Google Scholar
  150. S. R. Wang, D. Zhang, F. L. Luo et al., “Some cationic porphyrins: synthesis, stabilization of G-qua druplexes, and down-regulation of c-myc in Hep G2 cells,” Journal of Porphyrins and Phthalocyanines, vol. 13, no. 8-9, pp. 865–875, 2009. View at Google Scholar
  151. T. Murashima, D. Sakiyama, D. Miyoshi et al., “Cationic porphyrin induced a telomeric DNA to G-quadruplex form in water,” Bioinorganic Chemistry and Applications, vol. 2008, Article ID 294756, 5 pages, 2008. View at Publisher · View at Google Scholar · View at PubMed
  152. C.-C. Kang, C.-T. Chen, C.-C. Cho, Y.-C. Lin, C.-C. Chang, and T.-C. Chang, “A dual selective antitumor agent and fluorescence probe: the binary BMVC-porphyrin photosensitizer,” ChemMedChem, vol. 3, no. 5, pp. 725–728, 2008. View at Publisher · View at Google Scholar · View at PubMed
  153. B. Fu, J. Huang, L. Ren et al., “Cationic corrole derivatives: a new family of G-quadruplex inducing and stabilizing ligands,” Chemical Communications, no. 31, pp. 3264–3266, 2007. View at Publisher · View at Google Scholar · View at PubMed
  154. B. Fu, D. Zhang, X. Weng et al., “Cationic metal-corrole complexes: design, synthesis, and properties of guanine-quadruplex stabilizers,” Chemistry: A European Journal, vol. 14, no. 30, pp. 9431–9441, 2008. View at Publisher · View at Google Scholar · View at PubMed
  155. D. P. N. Gonçalves, R. Rodriguez, S. Balasubramanian, and J. K. M. Sanders, “Tetramethylpyridiniumporphyrazines—a new class of G-quadruplex inducing and stabilising ligands,” Chemical Communications, no. 45, pp. 4685–4687, 2006. View at Publisher · View at Google Scholar · View at PubMed
  156. A. Henn, A. Joachimi, D. P. Gonçalves et al., “Inhibition of dicing of guanosine-rich shRNAs by quadruplex-binding compounds,” ChemBioChem, vol. 9, no. 16, pp. 2722–2729, 2008. View at Google Scholar
  157. L. Ren, A. Zhang, J. Huang et al., “Quaternary ammonium zinc phthalocyanine: inhibiting telomerase by stabilizing G quadruplexes and inducing G-quadruplex structure transition and formation,” ChemBioChem, vol. 8, no. 7, pp. 775–780, 2007. View at Publisher · View at Google Scholar · View at PubMed
  158. L. Zhang, J. Huang, L. Ren et al., “Synthesis and evaluation of cationic phthalocyanine derivatives as potential inhibitors of telomerase,” Bioorganic and Medicinal Chemistry, vol. 16, no. 1, pp. 303–312, 2008. View at Publisher · View at Google Scholar · View at PubMed
  159. J. Alzeer, B. R. Vummidi, P. J. C. Roth, and N. W. Luedtke, “Guanidinium-modified phthalocyanines as high-affinity G-quadruplex fluorescent probes and transcriptional regulators,” Angewandte Chemie International Edition, vol. 48, no. 49, pp. 9362–9365, 2009. View at Publisher · View at Google Scholar · View at PubMed
  160. A. Membrino, M. Paramasivam, S. Cogoi, J. Alzeer, N. W. Luedtke, and L. E. Xodo, “Cellular uptake and binding of guanidine-modified phthalocyanines to KRAS/HRAS G-quadruplexes,” Chemical Communications, vol. 46, no. 4, pp. 625–627, 2010. View at Publisher · View at Google Scholar · View at PubMed
  161. Y. Li, C. R. Geyer, and D. Sen, “Recognition of anionic porphyrins by DNA aptamers,” Biochemistry, vol. 35, no. 21, pp. 6911–6922, 1996. View at Publisher · View at Google Scholar · View at PubMed
  162. Y. Li and D. Sen, “A catalytic DNA for porphyrin metallation,” Nature Structural Biology, vol. 3, no. 9, pp. 743–747, 1996. View at Publisher · View at Google Scholar
  163. P. Travascio, Y. Li, and D. Sen, “DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex,” Chemistry and Biology, vol. 5, no. 9, pp. 505–517, 1998. View at Google Scholar
  164. P. Travascio, A. J. Bennet, D. Y. Wang, and D. Sen, “A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites,” Chemistry and Biology, vol. 6, no. 11, pp. 779–787, 1999. View at Publisher · View at Google Scholar
  165. P. Travascio, P. K. Witting, A. G. Mauk, and D. Sen, “The peroxidase activity of a hemin-DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA,” Journal of the American Chemical Society, vol. 123, no. 7, pp. 1337–1348, 2001. View at Publisher · View at Google Scholar
  166. Y. Xiao, V. Pavlov, R. Gill, T. Bourenko, and I. Willner, “Lighting up biochemiluminescence by the surface self-assembly of DNA—hemin complexes,” ChemBioChem, vol. 5, no. 3, pp. 374–379, 2004. View at Publisher · View at Google Scholar · View at PubMed
  167. V. Pavlov, Y. Xiao, R. Gill, A. Dishon, M. Kotler, and I. Willner, “Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels,” Analytical Chemistry, vol. 76, no. 7, pp. 2152–2156, 2004. View at Publisher · View at Google Scholar · View at PubMed
  168. Y. Xiao, V. Pavlov, T. Niazov, A. Dishon, M. Kotler, and I. Willner, “Catalytic beacons for the detection of DNA and telomerase activity,” Journal of the American Chemical Society, vol. 126, no. 24, pp. 7430–7431, 2004. View at Publisher · View at Google Scholar · View at PubMed
  169. B.-C. Yin, B.-C. Ye, W. Tan, W. Hui, and C.-C. Xie, “An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(II),” Journal of the American Chemical Society, vol. 131, no. 41, pp. 14624–14625, 2009. View at Publisher · View at Google Scholar · View at PubMed
  170. B. Li, Y. Du, T. Li, and S. Dong, “Investigation of 3,3,5,5-tetramethylbenzidine as colorimetric substrate for a peroxidatic DNAzyme,” Analytica Chimica Acta, vol. 651, no. 2, pp. 234–240, 2009. View at Publisher · View at Google Scholar · View at PubMed
  171. Y. Weizmann, M. K. Beissenhirtz, Z. Cheglakov, R. Nowarski, M. Kotler, and I. Willner, “A virus spotlighted by an autonomous DNA machine,” Angewandte Chemie International Edition, vol. 45, no. 44, pp. 7384–7388, 2006. View at Publisher · View at Google Scholar · View at PubMed
  172. M. Deng, D. Zhang, Y. Zhou, and X. Zhou, “Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme,” Journal of the American Chemical Society, vol. 130, no. 39, pp. 13095–13102, 2008. View at Publisher · View at Google Scholar · View at PubMed
  173. Y. Weizmann, Z. Cheglakov, and I. Willner, “A fok l/DNA machine that duplicates its analyte gene sequence,” Journal of the American Chemical Society, vol. 130, no. 51, pp. 17224–17225, 2008. View at Publisher · View at Google Scholar · View at PubMed
  174. S. Nakayama and H. O. Sintim, “Colorimetric split G-quadruplex probes for nucleic acid sensing: improving reconstituted DNAzyme's catalytic efficiency via probe remodeling,” Journal of the American Chemical Society, vol. 131, no. 29, pp. 10320–10333, 2009. View at Publisher · View at Google Scholar · View at PubMed
  175. T. Li, L. Shi, E. Wang, and S. Dong, “Multifunctional G-quadruplex aptamers and their application to protein detection,” Chemistry: A European Journal, vol. 15, no. 4, pp. 1036–1042, 2009. View at Publisher · View at Google Scholar · View at PubMed
  176. D. Li, B. Shlyahovsky, J. Elbaz, and I. Willner, “Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates,” Journal of the American Chemical Society, vol. 129, no. 18, pp. 5804–5805, 2007. View at Publisher · View at Google Scholar · View at PubMed
  177. T. Li, E. Wang, and S. Dong, “G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin,” Chemical Communications, no. 31, pp. 3654–3656, 2008. View at Publisher · View at Google Scholar · View at PubMed
  178. T. Li, S. Dong, and E. Wang, “Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based dnazymes,” Analytical Chemistry, vol. 81, no. 6, pp. 2144–2149, 2009. View at Publisher · View at Google Scholar · View at PubMed
  179. D.-M. Kong, J. Wu, N. Wang, W. Yang, and H.-X. Shen, “Peroxidase activity-structure relationship of the intermolecular four-stranded G-quadruplex-hemin complexes and their application in Hg2+ ion detection,” Talanta, vol. 80, no. 2, pp. 459–465, 2009. View at Publisher · View at Google Scholar · View at PubMed
  180. J. Elbaz, B. Shlyahovsky, and I. Willner, “A DNAzyme cascade for the amplified detection of Pb2+ ions or L-histidine,” Chemical Communications, no. 13, pp. 1569–1571, 2008. View at Publisher · View at Google Scholar · View at PubMed
  181. T. Li, E. Wang, and S. Dong, “G-quadruplex-based DNAzyme as a sensing platform for ultrasensitive colorimetric potassium detection,” Chemical Communications, no. 5, pp. 580–582, 2009. View at Publisher · View at Google Scholar · View at PubMed
  182. T. Li, E. Wang, and S. Dong, “Potassium-lead-switched G-quadruplexes: a new class of DNA logic gates,” Journal of the American Chemical Society, vol. 131, no. 42, pp. 15082–15083, 2009. View at Publisher · View at Google Scholar · View at PubMed
  183. B. Shlyahovsky, Y. Li, O. Lioubashevski, J. Elbaz, and I. Willner, “Logic gates and antisense DNA devices operating on a translator nucleic acid scaffold,” ACS Nano, vol. 3, no. 7, pp. 1831–1843, 2009. View at Publisher · View at Google Scholar · View at PubMed
  184. D.-M. Kong, J. Wu, Y.-E. Ma, and H.-X. Shen, “A new method for the study of G-quadruplex ligands,” Analyst, vol. 133, no. 9, pp. 1158–1160, 2008. View at Publisher · View at Google Scholar · View at PubMed
  185. X. Cheng, X. Liu, T. Bing, Z. Cao, and D. Shangguan, “General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening,” Biochemistry, vol. 48, no. 33, pp. 7817–7823, 2009. View at Publisher · View at Google Scholar · View at PubMed
  186. H. Arthanari, S. Basu, T. L. Kawano, and P. H. Bolton, “Fluorescent dyes specific for quadruplex DNA,” Nucleic Acids Research, vol. 26, no. 16, pp. 3724–3728, 1998. View at Publisher · View at Google Scholar
  187. F. Rosu, V. Gabelica, C. Houssier, P. Colson, and E. De Pauw, “Triplex and quadruplex DNA structures studied by electrospray mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 16, no. 18, pp. 1729–1736, 2002. View at Publisher · View at Google Scholar · View at PubMed
  188. S. Paramasivan and P. H. Bolton, “Mix and measure fluorescence screening for selective quadruplex binders,” Nucleic Acids Research, vol. 36, no. 17, article e106, 2008. View at Publisher · View at Google Scholar · View at PubMed
  189. P. Ragazzon and J. B. Chaires, “Use of competition dialysis in the discovery of G-quadruplex selective ligands,” Methods, vol. 43, no. 4, pp. 313–323, 2007. View at Publisher · View at Google Scholar · View at PubMed
  190. S. G. Hershman, Q. Chen, J. Y. Lee et al., “Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae,” Nucleic Acids Research, vol. 36, no. 1, pp. 144–156, 2008. View at Publisher · View at Google Scholar · View at PubMed
  191. J. E. Johnson, J. S. Smith, M. L. Kozak, and F. B. Johnson, “In vivo veritas: using yeast to probe the biological functions of G-quadruplexes,” Biochimie, vol. 90, no. 8, pp. 1250–1263, 2008. View at Publisher · View at Google Scholar · View at PubMed
  192. A. K. Todd, M. Johnston, and S. Neidle, “Highly prevalent putative quadruplex sequence motifs in human DNA,” Nucleic Acids Research, vol. 33, no. 9, pp. 2901–2907, 2005. View at Publisher · View at Google Scholar · View at PubMed
  193. J. L. Huppert and S. Balasubramanian, “Prevalence of quadruplexes in the human genome,” Nucleic Acids Research, vol. 33, no. 9, pp. 2908–2916, 2005. View at Publisher · View at Google Scholar · View at PubMed
  194. J. L. Huppert and S. Balasubramanian, “G-quadruplexes in promoters throughout the human genome,” Nucleic Acids Research, vol. 35, no. 2, pp. 406–413, 2007. View at Publisher · View at Google Scholar · View at PubMed
  195. J. S. Smith and F. B. Johnson, “Isolation of G-quadruplex DNA using NMM-sepharose affinity chromatography,” in G-Quadruplex DNA: Methods and Protocols, P. Baumann, Ed., vol. 608 of Methods in Molecular Biology, chapter 13, pp. 207–221, 2010. View at Publisher · View at Google Scholar
  196. M.-P. Teulade-Fichou and J.-P. Vigneron, “Interactions of macrocyclic compounds with nucleic acids,” in Small Molecule DNA and RNA Binders: From Synthesis to Nucleic Acid Complexes, M. Demeunynck, C. Bailly, and W. D. Wilson, Eds., vol. 1, chapter 11, pp. 278–314, 2003. View at Google Scholar
  197. A. David, N. Bleimling, C. Beuck, J.-M. Lehn, E. Weinhold, and M.-P. Teulade-Fichou, “DNA mismatch-specific base flipping by a Bisacridine macrocycle,” ChemBioChem, vol. 4, no. 12, pp. 1326–1331, 2003. View at Publisher · View at Google Scholar · View at PubMed
  198. M. Bahr, V. Gabelica, A. Granzhan, M.-P. Teulade-Fichou, and E. Weinhold, “Selective recognition of pyrimidine-pyrimidine DNA mismatches by distance-constrained macrocyclic bis-intercalators,” Nucleic Acids Research, vol. 36, no. 15, pp. 5000–5012, 2008. View at Publisher · View at Google Scholar · View at PubMed
  199. A. Granzhan and M.-P. Teulade-Fichou, “A fluorescent bisanthracene macrocycle discriminates between matched and mismatch-containing DNA,” Chemistry: A European Journal, vol. 15, no. 6, pp. 1314–1318, 2009. View at Publisher · View at Google Scholar · View at PubMed
  200. A. Granzhan, E. Largy, N. Saettel, and M.-P. Teulade-Fichou, “Macrocyclic DNA-mismatch-binding ligands: structural determinants of selectivity,” Chemistry: A European Journal, vol. 16, no. 3, pp. 878–889, 2010. View at Publisher · View at Google Scholar · View at PubMed
  201. M. Jourdan, J. Garcia, J. Lhomme, M.-P. Teulade-Fichou, J.-P. Vigneron, and J.-M. Lehn, “Threading bis-intercalation of a macrocyclic bisacridine at abasic sites in DNA: nuclear magnetic resonance and molecular modeling study,” Biochemistry, vol. 38, no. 43, pp. 14205–14213, 1999. View at Publisher · View at Google Scholar
  202. S. Amrane, A. De Cian, F. Rosu et al., “Identification of trinucleotide repeat ligands with a FRET melting assay,” ChemBioChem, vol. 9, no. 8, pp. 1229–1234, 2008. View at Publisher · View at Google Scholar · View at PubMed
  203. M.-P. Teulade-Fichou, C. Carrasco, L. Guittat et al., “Selective recognition of G-quadruplex telomeric DNA by a bis(quinacridine) macrocycle,” Journal of the American Chemical Society, vol. 125, no. 16, pp. 4732–4740, 2003. View at Publisher · View at Google Scholar · View at PubMed
  204. C. Allain, D. Monchaud, and M.-P. Teulade-Fichou, “FRET templated by G-quadruplex DNA: a specific ternary interaction using an original pair of donor/acceptor partners,” Journal of the American Chemical Society, vol. 128, no. 36, pp. 11890–11893, 2006. View at Publisher · View at Google Scholar · View at PubMed
  205. V. Gabelica, E. S. Baker, M.-P. Teulade-Fichou, E. De Pauw, and M. T. Bowers, “Stabilization and structure of telomeric and c-myc region intramolecular G-quadruplexes: the role of central cations and small planar ligands,” Journal of the American Chemical Society, vol. 129, no. 4, pp. 895–904, 2007. View at Publisher · View at Google Scholar · View at PubMed
  206. P. Alberti, J. Ren, M. P. Teulade-Fichou et al., “Interaction of an acridine dimer with DNA quadruplex structures,” Journal of Biomolecular Structure and Dynamics, vol. 19, no. 3, pp. 505–513, 2001. View at Google Scholar
  207. P. Belmont, J. Bosson, T. Godet, and M. Tiano, “Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now?” Anti-Cancer Agents in Medicinal Chemistry, vol. 7, no. 2, pp. 139–169, 2007. View at Publisher · View at Google Scholar
  208. M. Demeunynck, “Antitumour acridines,” Expert Opinion on Therapeutic Patents, vol. 14, no. 1, pp. 55–70, 2004. View at Publisher · View at Google Scholar
  209. W. A. Denny, “Acridine derivatives as chemotherapeutic agents,” Current Medicinal Chemistry, vol. 9, no. 18, pp. 1655–1665, 2002. View at Google Scholar
  210. J.-L. Mergny, L. Lacroix, M.-P. Teulade-Fichou et al., “Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3062–3067, 2001. View at Publisher · View at Google Scholar · View at PubMed
  211. C. Hounsou, L. Guittat, D. Monchaud et al., “G-quadruplex recognition by quinacridines: a SAR, NMR, and biological study,” ChemMedChem, vol. 2, no. 5, pp. 655–666, 2007. View at Publisher · View at Google Scholar · View at PubMed
  212. D. Monchaud, C. Allain, H. Bertrand et al., “Ligands playing musical chairs with G-quadruplex DNA: a rapid and simple displacement assay for identifying selective G-quadruplex binders,” Biochimie, vol. 90, no. 8, pp. 1207–1223, 2008. View at Publisher · View at Google Scholar · View at PubMed
  213. O. Baudoin, F. Gonnet, M.-P. Teulade-Fichou, J.-P. Vigneron, J.-C. Tabet, and J.-M. Lehn, “Molecular recognition of nucleotide pairs by a cyclo-bis-intercaland-type receptor molecule: a spectrophotometric and electrospray mass spectrometry study,” Chemistry: A European Journal, vol. 5, no. 9, pp. 2762–2771, 1999. View at Google Scholar
  214. D. M. Crothers, “Calculation of binding isotherms for heterogenous polymers,” Biopolymers, vol. 6, no. 4, pp. 575–584, 1968. View at Google Scholar
  215. J. D. McGhee and P. H. von Hippel, “Theoretical aspects of DNA protein interactions: cooperative and non cooperative binding of large ligands to a one dimensional homogeneous lattice,” Journal of Molecular Biology, vol. 86, no. 2, pp. 469–489, 1974. View at Google Scholar
  216. M. Kaiser, A. De Cian, M. Sainlos, C. Renner, J.-L. Mergny, and M.-P. Teulade-Fichou, “Neomycin-capped aromatic platforms: quadruplex DNA recognition and telomerase inhibition,” Organic and Biomolecular Chemistry, vol. 4, no. 6, pp. 1049–1057, 2006. View at Publisher · View at Google Scholar · View at PubMed
  217. A. De Cian, P. Grellier, E. Mouray et al., “Plasmodium telomeric sequences: structure, stability and quadruplex targeting by small compounds,” ChemBioChem, vol. 9, no. 16, pp. 2730–2739, 2008. View at Google Scholar
  218. A. Bugaut, K. Jantos, J.-L. Wietor, R. Rodriguez, J. K. M. Sanders, and S. Balasubramanian, “Exploring the differential recognition of DNA G-quadruplex targets by small molecules using dynamic combinatorial chemistry,” Angewandte Chemie International Edition, vol. 47, no. 14, pp. 2677–2680, 2008. View at Publisher · View at Google Scholar · View at PubMed
  219. J. E. Redman, J. M. Granadino-Roldan, J. A. Schouten et al., “Recognition and discrimination of DNA quadruplexes by acridine-peptide conjugates,” Organic and Biomolecular Chemistry, vol. 7, no. 1, pp. 76–84, 2009. View at Publisher · View at Google Scholar · View at PubMed