Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2011 (2011), Article ID 103872, 6 pages
http://dx.doi.org/10.4061/2011/103872
Research Article

Control of Aptamer Function Using Radiofrequency Magnetic Field

1Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
2Department of Applied Physics, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
3Department of Material Science and Technology, Nagaoka University of Technology 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan
4PRESTO Program, Japan Science and Technology Agency, 5 Sambancho, Chiyodaku, Tokyo 102-0075, Japan

Received 22 May 2011; Accepted 28 June 2011

Academic Editor: Daisuke Miyoshi

Copyright © 2011 Kenichi Taira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature, vol. 346, no. 6287, pp. 818–822, 1990. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. C. Tuerk and L. Gold, “Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, no. 4968, pp. 505–510, 1990. View at Google Scholar · View at Scopus
  3. T. Hermann and D. J. Patel, “Adaptive recognition by nucleic acid aptamers,” Science, vol. 287, no. 5454, pp. 820–825, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Mikat and A. Heckel, “Light-dependent RNA interference with nucleobase-caged siRNAs,” RNA, vol. 13, no. 12, pp. 2341–2347, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. C.R. Buff, F. Schäfer, B. Wulffen et al., “Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency,” Nucleic Acids Research, vol. 38, no. 6, pp. 2111–2118, 2009. View at Publisher · View at Google Scholar · View at PubMed
  6. K. Konig, “Multiphoton microscopy in life sciences,” Journal of Microscopy, vol. 200, no. 2, pp. 83–104, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Hamad-Schifferli, J. J. Schwartz, A. T. Santos, S. Zhang, and J. M. Jacobson, “Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna,” Nature, vol. 415, no. 6868, pp. 152–155, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature, vol. 355, no. 6360, pp. 564–566, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. K. Ikebukuro, Y. Okumura, K. Sumikura, and I. Karube, “A novel method of screening thrombin-inhibiting DNA aptamers using an evolution-mimicking algorithm,” Nucleic Acids Research, vol. 33, no. 12, p. e108, 2005. View at Google Scholar · View at Scopus
  10. A. B. Dobrovolsky, E. V. Titaeva, S. G. Khaspekova, V. A. Spiridonova, A. M. Kopylov, and A. V. Mazurov, “Inhibition of thrombin activity with DNA-aptamers,” Bulletin of Experimental Biology and Medicine, vol. 148, no. 1, pp. 33–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Padmanabhan, K. P. Padmanabhan, J. D. Ferrara, J. E. Sadler, and A. Tulinsky, “The structure of α-thrombin inhibited by a 15-mer single-stranded DNA aptamer,” Journal of Biological Chemistry, vol. 268, no. 24, pp. 17651–17654, 1993. View at Google Scholar · View at Scopus
  12. K. Abe, D. Ogasawara, W. Yoshida, K. Sode, and K. Ikebukuro, “Aptameric sensors based on structural change for diagnosis,” Faraday Discussions, vol. 149, pp. 93–105, 2011. View at Publisher · View at Google Scholar
  13. N. R. Markham and M. Zuker, “DINAMelt web server for nucleic acid melting prediction,” Nucleic Acids Research, vol. 33, no. 2, pp. W577–W581, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. C. P. Rusconi, J. D. Roberts, G. A. Pitoc et al., “Antidote-mediated control of an anticoagulant aptamer in vivo,” Nature Biotechnology, vol. 22, no. 11, pp. 1423–1428, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. A. Ito, Y. Kuga, H. Honda et al., “Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia,” Cancer Letters, vol. 212, no. 2, pp. 167–175, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. Cardinal, J. R. Klune, E. Chory et al., “Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles,” Surgery, vol. 144, no. 2, pp. 125–132, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus