Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2011 (2011), Article ID 586935, 7 pages
http://dx.doi.org/10.4061/2011/586935
Research Article

Branched RNA: A New Architecture for RNA Interference

1Institute for Research in Biomedicine (IRB Barcelona), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Baldiri Reixac 10, 08028 Barcelona, Spain
2Department of Physiological Sciences, School of Medicine, University of Barcelona (Campus Bellvitge), Feixa Llarga, L'Hospitalet de Llobregat, 08907 Barcelona, Spain

Received 16 October 2010; Accepted 14 January 2011

Academic Editor: Arthur van Aerschot

Copyright © 2011 Anna Aviñó et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. de Fougerolles, H. P. Vornlocher, J. Maraganore, and J. Lieberman, “Interfering with disease: a progress report on siRNA-based therapeutics,” Nature Reviews Drug Discovery, vol. 6, no. 6, pp. 443–453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. Braasch, S. Jensen, Y. Liu et al., “RNA interference in mammalian cells by chemically-modified RNA,” Biochemistry, vol. 42, no. 26, pp. 7967–7975, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Tiemann and J. J. Rossi, “RNAi-based therapeutics-current status, challenges and prospects,” EMBO Molecular Medicine, vol. 1, no. 3, pp. 142–151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Eberle, K. Gießler, C. Deck et al., “Modifications in small interfering RNA that separate immunostimulation from RNA interference,” Journal of Immunology, vol. 180, no. 5, pp. 3229–3237, 2008. View at Google Scholar · View at Scopus
  5. A. L. Jackson, S. R. Bartz, J. Schelter et al., “Expression profiling reveals off-target gene regulation by RNAi,” Nature Biotechnology, vol. 21, no. 6, pp. 635–637, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. K. Watts, G. F. Deleavey, and M. J. Damha, “Chemically modified siRNA: tools and applications,” Drug Discovery Today, vol. 13, no. 19-20, pp. 842–855, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. YA. L. Chiu and T. M. Rana, “siRNA function in RNAi: a chemical modification analysis,” RNA, vol. 9, no. 9, pp. 1034–1048, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Blidner, R. P. Hammer, M. J. Lopez, S. O. Robinson, and W. T. Monroe, “Fully 2-deoxy-2-fluoro substituted nucleic acids induce RNA interference in mammalian cell culture,” Chemical Biology and Drug Design, vol. 70, no. 2, pp. 113–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Elmén, H. Thonberg, K. Ljungberg et al., “Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality,” Nucleic Acids Research, vol. 33, no. 1, pp. 439–447, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Terrazas and E. T. Kool, “RNA major groove modifications improve siRNA stability and biological activity,” Nucleic Acids Research, vol. 37, no. 2, pp. 346–353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Soutschek, A. Akinc, B. Bramlage et al., “Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs,” Nature, vol. 432, no. 7014, pp. 173–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl, “Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells,” Nature, vol. 411, no. 6836, pp. 494–498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Czauderna, M. Fechtner, S. Dames et al., “Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells,” Nucleic Acids Research, vol. 31, no. 11, pp. 2705–2716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. D. H. Kim, M. A. Behlke, S. D. Rose, MI. S. Chang, S. Choi, and J. J. Rossi, “Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy,” Nature Biotechnology, vol. 23, no. 2, pp. 222–226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Siolas, C. Lerner, J. Burchard et al., “Synthetic shRNAs as potent RNAi triggers,” Nature Biotechnology, vol. 23, no. 2, pp. 227–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Abe, H. Abe, and Y. Ito, “Dumbbell-shaped nanocircular RNAs for RNA interference,” Journal of the American Chemical Society, vol. 129, no. 49, pp. 15108–15109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. B. Bramsen, M. B. Laursen, C. K. Damgaard et al., “Improved silencing properties using small internally segmented interfering RNAs,” Nucleic Acids Research, vol. 35, no. 17, pp. 5886–5897, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. V. A. Korshun, N. B. Pestov, E. V. Nozhevnikova, I. A. Prokhorenko, S. V. Gontarev, and Y. A. Berlin, “Reagents for multiple non-radioactive labelling of oligonucleotides,” Synthetic Communications, vol. 26, no. 13, pp. 2531–2547, 1996. View at Google Scholar
  19. M. S. Shchepinov, A. J. Udalova, A. J. Bridgman, and E. M. Southern, “Oligonucleotide dendrimers: synthesis and use as polylabeled DNA probes,” Nucleic Acids Research, vol. 25, no. 22, pp. 4447–4454, 1997. View at Google Scholar
  20. M. S. Shchepinov and E. M. Southern, “The synthesis of branched oligonucleotide structures,” Bioorganicheskaya Khimiya, vol. 24, no. 10, pp. 794–797, 1998. View at Google Scholar
  21. M. J. Damha and K. K. Ogilvie, “Synthesis and spectroscopic analysis of branched RNA fragments: messenger RNA splicing intermediates,” Journal of Organic Chemistry, vol. 53, no. 16, pp. 3710–3722, 1988. View at Google Scholar · View at Scopus
  22. E. Utagawa, A. Ohkubo, M. Sekine, and K. Seio, “Synthesis of branched oligonucleotides with three different sequences using an oxidatively removable tritylthio group,” Journal of Organic Chemistry, vol. 72, no. 22, pp. 8259–8266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. S. Braich and M. J. Damha, “Regiospecific solid-phase synthesis of branched oligonucleotides. Effect of vicinal 2',5'- (or 2',3'-) and 3',5'-phosphodiester linkages on the formation of hairpin DNA,” Bioconjugate Chemistry, vol. 8, no. 3, pp. 370–377, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. M. J. Damha, K. Ganeshan, R. H.E. Hudson, and S. V. Zabarylo, “Solid-phase synthesis of branched oligoribonucleotides related to messenger RNA splicing intermediates,” Nucleic Acids Research, vol. 20, no. 24, pp. 6565–6573, 1992. View at Google Scholar
  25. S. Carriero and M. J. Damha, “Inhibition of pre-mRNA splicing by synthetic branched nucleic acids,” Nucleic Acids Research, vol. 31, no. 21, pp. 6157–6167, 2003. View at Publisher · View at Google Scholar
  26. M. Grøtli, R. Eritja, and B. Sproat, “Solid-phase synthesis of branched RNA and branched DNA/RNA chimeras,” Tetrahedron, vol. 53, no. 33, pp. 11317–11346, 1997. View at Publisher · View at Google Scholar
  27. Y. Ueno, M. Takeba, M. Mikawa, and A. Matsuda, “Nucleosides and nucleotides. 182. Synthesis of branched oligodeoxynucleotides with pentaerythritol at the branch point and their thermal stabilization of triplex formation,” Journal of Organic Chemistry, vol. 64, no. 4, pp. 1211–1217, 1999. View at Publisher · View at Google Scholar
  28. M. D. Sorensen, M. Meldgaard, V. K. Rajwanshi, and J. Wengel, “Branched oligonucleotides containing bicyclic nucleotides as branching points and DNA or LNA as triplex forming branch,” Bioorganic and Medicinal Chemistry Letters, vol. 10, no. 16, pp. 1853–1856, 2000. View at Publisher · View at Google Scholar
  29. A. Aviñó, M. G. Grimau, M. Frieden, and R. Eritja, “Synthesis and triplex-helix-stabilization properties of branched oligonucleotides carrying 8-aminoadenosine moieties,” Helvetica Chimica Acta, vol. 87, no. 2, pp. 303–316, 2004. View at Google Scholar
  30. M. S. Shchepinov, K. U. Mir, J. K. Elder, M. D. Frank-Kamenetskii, and E. M. Southern, “Oligonucleotide dendrimers: stable nano-structures,” Nucleic Acids Research, vol. 27, no. 15, pp. 3035–3041, 1999. View at Publisher · View at Google Scholar
  31. M. G. Grimau, D. Iacopino, A. Aviñó et al., “Synthesis of branched oligonucleotides as templates for the assembly of nanomaterials,” Helvetica Chimica Acta, vol. 86, no. 8, pp. 2814–2826, 2003. View at Publisher · View at Google Scholar
  32. S. E. Stanca, A. Ongaro, R. Eritja, and D. Fitzmaurice, “DNA-templated assembly of nanoscale architectures,” Nanotechnology, vol. 16, no. 9, pp. 1905–1911, 2005. View at Publisher · View at Google Scholar
  33. H. Yang and H. F. Sleiman, “Templated synthesis of highly stable, electroactive, and dynamic metal-DNA branched junctions,” Angewandte Chemie—International Edition, vol. 47, no. 13, pp. 2443–2446, 2008. View at Publisher · View at Google Scholar
  34. M. Scheffler, A. Dorenbeck, S. Jordan, M. Wüstefeld, and G. Von Kiedrowski, “Self-assembly of trisoligonucleotidyls: the case for nanoacetylene and nano-cyclobutadiene,” Angewandte Chemie—International Edition, vol. 38, no. 22, pp. 3312–3315, 1999. View at Google Scholar
  35. T. Horn, C. A. Chang, and M. S. Urdea, “Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays,” Nucleic Acids Research, vol. 25, no. 23, pp. 4842–4849, 1997. View at Google Scholar · View at Scopus
  36. D. R. Sørensen, M. Leirdal, and M. Sioud, “Gene silencing by systemic delivery of synthetic siRNAs in adult mice,” Journal of Molecular Biology, vol. 327, no. 4, pp. 761–766, 2003. View at Publisher · View at Google Scholar · View at Scopus